
4 198255 014951 01

Deutschland

14,95 EUR

Ausgabe � 1/16
CH:	29,90 CHF
A, B, NL, L:	
16,45 EUR

1/
16

Sm
ar

tp
ho

ne

 T
ab

le
t

 H
TM

L5

 J
av

aS
cr

ip
t

 F
ra

m
ew

or
ks

 E

nt
w

ic
kl

un
gs

um
ge

bu
ng

en

 R
es

po
ns

iv
e

W
eb

de
si

gn

 P
H

P

Für professionelle Entwickler ist Version Control System (VCS)
ein heißes Thema. ab S. 14

Versionen im
Griff mit Git

Auf der Heft-CD
Eine Sammlung interessanter JavaScript-Frameworks sowie
eine Auswahl leistungsfähiger Tools für Entwickler S. 50

E-Commerce-
Software Magento 2 S. 112

Alle Neuerungen
von Bootstrap 4.0 S. 52

Templatesyntax
 von Angular2 S. 32

DEVELOPER
web & mobile webundmobile.de

D
EV

EL
O

PE
R

w
eb

 &
 m

ob
ile

D
EV

EL
O

PE
R

Upgrades für Ihr Entwickler-Know-How
Ab sofort in unseren Shops erhältlich!

https://shop.dotnetpro.de
https://shop.webundmobile.de

3www.webundmobile.de  1.2016

1/2016 Editorial

Bei Versionsverwaltungssystemen unterscheidet man prinzipiell zwischen

zwei verschiedenen Ansätzen, nämlich zwischen zentralen VCS und dezen-

tralen VCS. Der Nachteil von zentralen VCS ist, dass der entsprechende Server,

auf dem das Repository liegt, immer zur Verfügung stehen muss, um eigene

Änderungen hochladen oder Aktualisierungen anderer Entwickler aus dem

System auf den eigenen Rechner herunterladen zu können. Dieses Problem

adressieren dezentrale beziehungsweise verteilte Versionskontrollsysteme wie

das im Schwerpunkt dieser Ausgabe vorgestellte Git, das in den vergangenen

Jahren in Entwicklerkreisen immer mehr Freunde gefunden hat.

Das ursprünglich von Twitter ins Leben gerufene Framework Bootstrap ist

mittlerweile seit Jahren eines der beliebtesten Repositories auf GitHub und man

geht davon aus, dass 13 Prozent aller Websites, die JavaScript verwenden, auch

Bootstrap einsetzen. Das sind in etwa 9 Prozent aller Websites im Web. Damit ist

Bootstrap nach jQuery die beliebteste JavaScript-Bibliothek überhaupt. Die Ma-

cher von Bootstrap wollen diesen Erfolg festigen und haben das schon etwas be-

tagte Framework einer Generalüberholung unterzogen. Das Ergebnis, Bootstrap

4.0, stellt unser Autor Patrick Lobacher ab Seite 52 im Detail vor.

Auch vom bekannten CMS TYPO3 gibt es eine neue Version. Ab Seite 118 er-

läutert Michael Schams, was für Verbesserungen und Neuerungen TYPO3 CMS

7 LTS zu bieten hat.

Ihr Max Bold

chefredakteur@maxbold.de

Für professionelle Entwickler, die dazu

noch häufig im Team arbeiten, ist VCS ein

heißes Thema.

Version Control

»Für professionelle Entwickler ist

Versionsverwaltung ein heißes Thema.«

erläutert die neuen Features

von Bootstrap 4.0 (S. 52)

präsentiert die Details des

Battery Status API (S. 68)

stellt die neueste Version

von TYPO3 vor (S. 118)

Philip Ackermann

Michael Schams

Patrick Lobacher

4 1.2016  www.webundmobile.de

1/2016Inhalt

I n h a l t
Aktuell
Microsoft
Zwei Cloud-Rechenzentren in Deutschland geplant� 6

Feature
Einführung in die Versionskontrolle mit Git
Das Versionsverwaltungssystem Git unterscheidet sich in vie-
lerlei Hinsicht von anderen Versionsverwaltungssystemen� 14

HTML, CSS & JavaScript
Schneller CSS erzeugen mit PostCSS
PostCSS will die etablierten Präprozessoren ablösen� 26

Template-Syntax von Angular 2.0
Das Templating mit AngularJS war bereits ein mächtiges Werk-
zeug. Mit Angular 2.0 legen die Entwickler nun kräftig nach� 32

Automatisiertes Testen von Webseiten
Komplexe Webseiten und Single Page Applications benötigen
einen hohen Testaufwand� 38

Bibliothek Redux
Eine Bibliothek zur Verwaltung von Anwendungszuständen� 42

Bootstrap 4.0
Knapp eineinhalb Jahre nach Bootstrap 3 setzt das beliebte
Frontend-Framework zum nächsten Versionssprung an� 52

Mobile Development
Bluetooth LE
Die Kommunikation zwischen Android und klassischer Hardware
erfährt durch Bluetooth LE eine komplette Neugestaltung� 58

Battery Status API
In unserer Serie geht es diesmal um das Battery Status API� 68

iOS: Core Graphics API
Das Core Graphics API ist eine Schnittstelle zum Zeichnen
geometrischer Elemente in einer View� 72

Swift-Performance optimieren
Auch Swift-Code kann in Sachen Performance noch weiter
optimiert werden� 78

Modularisierte Apps mit Grunt und PhoneGap
Modularisierung ist bei einem umfangreichen Projekt das Gebot
der Stunde� 82

Foto: Mathias Vietmeier

Experten in dieser Ausgabe
Siegfried Bolz zeigt
in einem Artikel, wie
man modularisierte
Apps mit Grunt und
PhoneGap erstellt.�
82

Alexander Steireif
stellt die neueste
Version der Open-
Source-E-Com
merce-Software
Magento vor.� 112

Mit Versionsverwaltungssystemen kann man bei Software
projekten Änderungen am Quelltext protokollieren� S. 14

Mit CSS-Präprozessoren und Tools wie PostCSS schreiben
Entwickler effektiver und schneller CSS-Code� S. 26

5www.webundmobile.de  1.2016

1/2016 Inhalt

Xtext, Xtend: Domain-Specific Language für C++ / Qt (Teil 3)
Stressfreie Implementierung dank des Einsatzes einer DSL
(Domain-Specific Language)� 92

Strukturhilfe mit Android Studio
Wie Sie mit dem Listview-Control und Android Studio eine
hilfreiche App erstellen� 98

Backend
Request-Bibliothek httpful
Immer mehr Systeme müssen miteinander per HTTP-Protokoll
kommunizieren� 106

E-Commerce-Software Magento 2
Von der populären E-Commerce Lösung gibt es eine neue und
komplett überarbeitete Version� 112

TYPO3 CMS Version 7 LTS
Dieser große Meilenstein in der TYPO3-Geschichte bringt eine
Menge an Änderungen und Verbesserungen mit sich� 118

Aimeos E-Commerce-Package
Mit dem E-Commerce-Package Aimeos maßgeschneiderte
Webshop-Lösungen in Flow bauen� 124

Beyond Dev
Grafik für Entwickler: Landingpage
Nicht nur der Inhalt, sondern auch der Text- und Bildaufbau
bestimmen die Qualität einer Landingpage� 128

Wissensbasierte Applikationen entwickeln mit Ontologien
Semantische Web-Datenbanken mit Web Ontology Language
(OWL) – eine Einführung� 132

Standards
Editorial� 3

Heft-CD� 50

Impressum� 111

Online-Recht� 140

Arbeitsmarkt� 142

Dienstleisterverzeichnis� 145

Vorschau� 146

Jetzt abonnieren
Sichern Sie sich jetzt die web & mobile developer im
Jahresabo und profitieren Sie von exklusiven Services und
Angeboten für Abonnenten.
https://shop.webundmobile.de

Bootstrap sieht sich als Nummer eins der HTML-, CSS- und
JavaScript-Frameworks in der Welt� S. 52

Eine Landingpage soll sich nach einem Klick auf einen Link
in einer Suchmaschine oder auf ein Banner öffnen� S. 128

Image Cropping:
Mit dieser Funktion
lassen sich bestimmte
Ausschnitte von Bil-
dern sehr komforta-
bel im Backend von
TYPO3 CMS 7 LTS be-
arbeiten.� S. 118

6 1.2016  www.webundmobile.de

NewsAktuell

Microsoft

Zwei Cloud-Rechen-
zentren in Deutsch-
land geplant

Satya Nadella hat in Berlin die

neue Microsoft-Cloud-Strate-

gie für Deutschland vorgestellt:

Microsoft bietet seine Cloud-

Dienste Azure, Office 365 und

Dynamics CRM Online zukünftig

auch aus deutschen Rechen-

zentren heraus an.

Mit der neuen Cloud-Lösung

will Microsoft sicherstellen,

dass Kundendaten ausschließ-

lich innerhalb Deutschlands

transportiert und gespeichert

werden. Als deutscher Daten-

treuhänder kontrolliert T-Sys-

tems den Zugriff auf die Kun-

dendaten. Als Standorte für die

Rechenzentren sind Frankfurt

sowie Magdeburg geplant.

Microsoft-CEO Satya Nadella:

»Wir wollen jeden Menschen

und jede Organisation auf der

Welt dazu befähigen, mehr zu

erreichen. Die neuen Cloud-

Dienste treiben lokale Innova

tionen und Wachstum voran und

bieten Kunden mehr Flexibilität

und Wahlmöglichkeiten. Kunden

können weiterhin unsere öffent-

lichen, privaten und hybriden

Cloud-Lösungen nutzen oder

sich dafür entscheiden, unsere

Services aus deutschen Rechen-

zentren zu beziehen und den

Zugang zu ihren Daten durch

einen deutschen Datentreu-

händer kontrollieren zu lassen«.

»Mit dem neuen Angebot

reagieren wir auf die steigende

Nachfrage nach unseren Cloud-

Diensten in Deutschland. Die

Verknüpfung der Innovations-

kraft und Skalierbarkeit unserer

Microsoft-Cloud-Plattform mit

deutscher Infrastruktur und

deutschem Datentreuhänder ist

aus unserer Sicht am Markt ein-

zigartig«, erklärte Alex Stüger,

Vorsitzender der Geschäftsfüh-

rung von Microsoft Deutsch-

land. Wie die Bitkom-Studie

»Cloud Monitor 2015« berich-

tet, erwarten 83 Prozent der

deutschen Unternehmen, dass

ihr Cloud-Anbieter seine Re-

chenzentren ausschließlich in

Deutschland betreibt.

Für die neuen deutschen Re-

chenzentren gelten dieselben

Sicherheits-, Service- und Qua-

litätsstandards wie für alle Re-

chenzentren von Microsoft. Die

neuen Dienste folgen in puncto

Sicherheit, Compliance, Trans-

parenz, Datenschutz und Kon

trolle denselben Prinzipien wie

alle weltweiten Cloud-Services

von Microsoft. Die neuen

Cloud-Dienste sollen ab der

zweiten Jahreshälfte 2016 suk-

zessive ausgerollt werden und

auch Kunden aus anderen eu-

ropäischen Ländern (EU und

EFTA) zur Verfügung stehen.

www.microsoft.com

Telerik Test Studio

Native iOS- und
Android-Apps
automatisch testen

Mit der neuen Lösung Telerik

Test Studio Mobile können Tes-

ter und Entwickler iOS- und

Android-Apps auf echten Mo-

bilgeräten wie auch auf Emula-

toren ohne jede Codeprogram-

mierung automatisiert testen.

Progress hat ein neues Re-

lease von Telerik Test Studio,

seiner Suite für automatisiertes

Testing vorgestellt. Das Telerik

Test Studio Mobile, ein neuer

Bestandteil der Suite, ermög-

licht es jetzt, auch native iOS-

und Android-Apps zu testen.

Per Point and Click lassen sich

komplexe mobile Testfunktio-

nen schnell zusammenstellen

und wiederholt anwenden, wo-

durch die Testprozesse erheb-

lich beschleunigt werden.

Laut einer Studie von Loca-

lytics werden 19 Prozent der

Apps von US-amerikanischen

Nutzern nur ein einziges Mal

verwendet. Häufig kehren User

einer App den Rücken, weil sie

zu kompliziert, zu fehlerhaft

oder zu langsam ist. Der per-

manente Wandel des mobilen

Marktes und die hohen Erwar-

tungen der Anwender an die

N e w s & T r e nds
Aktuelle News aus der Entwicklerszene

Laut Microsoft-CEO Satya

Nadella sollen zwei Cloud-

Rechenzentren in Deutschland

entstehen

Vom Telerik Test Studio

wurde eine neue Version

vorgestellt

Unternehmen zögern
mit digitaler Agenda
Für mehr als zwei Drittel

der Unternehmen im

DACH-Raum hat die

Digitalisierung den Wett-

bewerb bereits heute ver-

ändert. Doch nur 39 Pro-

zent haben schon eine

digitale Agenda für sich

definiert.

News

Die Digitalisierung hat
den Wettbewerb …

Hat Ihr Unternehmen
bereits eine digitale
Agenda?

… jetzt schon verändert

68 %

Ja

39 %

… wird ihn in naher Zukunft
verändern (1 – 2 Jahre)

22 %

Nein (kommt in den
nächsten 12 Monaten)

30 %

… wird ihn in fernerer Zu-
kunft verändern (3 – 5 Jahre)

5 %

Nein (kommt nicht in den
nächsten 12 Monaten)

13 %

… wird ihn auf absehbare
Zeit nicht verändern

5 %

Nein (kommt nicht in den
nächsten fünf Jahren)

18 %

7www.webundmobile.de  1.2016

News Aktuell

Apps setzen die Entwicklungs-

und die operativen Teams unter

großen Druck. Sie müssen auf

Methoden des Rapid Applica-

tion Development und Deploy-

ment setzen, um leistungsfähi-

ge mobile Anwendungen

schnell zu erstellen.

Um das zu erreichen, müssen

die Apps während des Entwick-

lungsprozesses möglichst oft

und möglichst früh getestet

werden. Das gilt ganz beson-

ders für agile Teams. Als Low-

Code-/No-Code-Lösung kon-

zipiert, ermöglicht Telerik Test

Studio Mobile eine enge Zu-

sammenarbeit von Entwicklern

und Testern. Sie können ge-

meinsam stabile und ausgefeil-

te Apps erstellen, die über ver-

schiedene iOS- und Android-

Varianten hinweg zuverlässig

und performant laufen.

www.telerik.com/teststudio

Bluetooth-Technologie 2016

Größere Reichweite,
höhere Geschwindig-
keit und Mesh-Net-
working
Die Bluetooth Special Interest

Group (SIG) hat die Highlights

ihrer Technologie-Roadmap für

2016 vorgestellt. In deren Mit-

telpunkt stehen Erweiterungen

der Bluetooth-Funktionalitäten

für das Internet der Dinge (In-

ternet of Things, IoT).

Zu den wichtigsten technolo-

gischen Updates werden eine

größere Reichweite, eine höhe-

re Geschwindigkeit sowie Mesh-

Networking zählen. Die Weiter-

entwicklungen von Bluetooth

werden vor allem den schnell

wachsenden Branchen wie

Zahl des Monats
Die Fernsteuerung von Rolläden gehört mit 78 % zu den bekanntesten Smart-Home-Anwen-
dungen bei den deutschen Haus- und Wohnungsbesitzern. Es folgen die Fernsteuerung von Licht-
anlagen mit 77 % und von Heizkörpern beziehungsweise Thermostaten mit 76 %. Dies sind Ergeb-
nisse einer Umfrage des Marktforschungs- und Beratungsinstituts YouGov.

Quelle: YouGov

Wenig Digitalisierungsdynamik
Laut Wirtschaftsindex DIGITAL, den TNS Infra-

test und das ZEW im Auftrag des Bundesminis-

teriums für Wirtschaft und Energie veröffentlicht

haben, erreicht Deutschland beim Digitalisie-

rungsgrad seiner gewerblichen Wirtschaft gera-

de einmal 49 von 100 möglichen Indexpunkten.

Der Wirtschaftsindex DIGITAL zeigt, dass sich

elf beobachtete Kernbranchen in fünf Digitali-

sierungsdimensionen zwischen stark über-

durchschnittlich bis stark unterdurchschnittlich

digitalisiert aufteilen.

Einzig die IKT-Wirtschaft erreicht mit 66 In-

dexpunkten den höchsten Digitalisierungsgrad

und ist damit Vorreiter der digitalen Transfor-

mation in Deutschland. Prognostiziert wird die-

sem Wirtschaftsbereich für 2020 ein Wert von

71 Punkten. Als überdurchschnittlich digitali-

siert gelten wissensintensive Dienstleister mit

heute 59 und in fünf Jahren 62 Indexpunkten.

Finanz- und Versicherungsdienstleister errei-

chen heute 55 Indexpunkte und 2020 ebenfalls

62 Indexpunkte.

Durchschnittlich digitalisiert zeigt sich mit 50

Indexpunkten im Jahr 2015 der Handel. Prog-

nostiziert wird ihm eine Verbesserung um sechs

Punkte. Die Energie- und Wasserversorgung

(2015: 47 Punkte) verbessert sich um zwölf

Punkte und soll in fünf Jahren 59 Indexpunkte

erreichen.

Unterdurchschnittlich digitalisiert sind und

bleiben Verkehr und Logistik (2015: 40, 2020:

49 Punkte). Der Maschinenbau zeigt ein hohes

Digitalisierungstempo (2015: 39 Punkte, 2020:

51 Punkte) und steigt 2020 in die nächsthöhere

Digitalisierungsdimension auf. Dagegen sind die

Wirtschaftsbereiche Chemie und Pharma ge-

genwärtig unterdurchschnittlich digitalisiert

(2015: 40 Punkte).

Stark unterdurchschnittlich digitalisiert sind

und bleiben die Einrichtungen im deutschen

Gesundheitswesen (2015: 36 Punkte, 2020: 44

Indexpunkte). Auch der Fahrzeugbau fällt ge-

genwärtig mit 37 Punkten in diese Kategorie,

steigt aber 2020 mit 48 Punkten in den nächst-

höheren Digitalisierungsgrad auf. Ein sehr ho-

hes Digitalisierungstempo hat das sonstige ver-

arbeitende Gewerbe (2015: 36 Punkte, 2020: 50

Punkte), das sich bis 2020 sogar um zwei Digi-

talisierungsdimensionen zu »durchschnittlich

digitalisiert« verbessern wird.

Der Wirtschaftsindex DIGITAL zeigt, wie weit

die Digitalisierung in den deutschen Unterneh-

men aktuell fortgeschritten ist.

Monitoring Report Wirtschaft DIGITAL 2015

� Index = 49 Punkte; Repr. Unternehmensbefragung; eig. Berechnung, n = 770
web & mobile developer 1/2016� Quelle: TNS Infratest

Wirtschaftsindex DIGITAL 2015: Branchen-Clustering relativ zur gewerblichen Wirtschaft

IKT 66

Wissensintensive Dienstleister 59

55Finanz- und Versicherungsdienstleister

Handel

Energie- und Wasserversorgung

50

47

Verkehr und Logistik

Chemie und Pharma

Maschinenbau

40

40

39

Fahrzeugbau

Sonstiges verarbeitendes Gewerbe

Gesundheitswesen

37

36

36

Stark überdurch-
schnittlich digitalisiert

Überdurchschnittlich
digitalisiert

Durchschnittlich
digitalisiert

Unterdurchschnittlich
digitalisiert

Stark unterdurch-
schnittlich digitalisiert

▶

8 1.2016  www.webundmobile.de

NewsAktuell

Smart Home, Industrieautoma-

tion, standortbasierte Dienste

und intelligente Infrastrukturen

zugute kommen.

Von den angekündigten Er-

weiterungen wird die wachsen-

de Zahl von IoT-Anwendungen

profitieren. Die Reichweite von

Bluetooth Smart wird sich um

das Vierfache erhöhen und so

das intelligente Heim sowie

Infrastruktur-Anwendungen

grundlegend verändern. Zudem

wird dadurch eine erweitertete,

robuste Verbindung für Full-

Home- oder Outdoor-Anwen-

dungen zur Verfügung stehen.

Eine Steigerung der Geschwin-

digkeit um hundert Prozent, oh-

ne dabei den Energieverbrauch

zu erhöhen, ermöglicht nicht

nur eine schnellere Datenüber-

tragung in kritischen Anwen-

dungen, wie beispielsweise in

medizinischen Geräten, sondern

erhöht auch die Reaktionsfähig-

keit und verkürzt die Latenzzeit.

Mit Mesh-Networking sind

Bluetooth-fähige Geräte künftig

in der Lage, sich miteinander als

Netzwerke zu verbinden, die

damit ein ganzes Gebäude oder

Zuhause abdecken. Dadurch er-

öffnen sich grundlegend neue

Heim- und Industrieautoma-

tions-Anwendungen.

»Mit den angekündigten

technologischen Erweiterungen

berücksichtigen wir die hohe

Nachfrage nach neuen Blue-

tooth-Funktionen durch unse-

rere Mitglieder und durch die

Branche als Ganzes«, erläutert

Toby Nixon, Chairman of the

Bluetooth SIG Board of Direc-

Das Hasso-Plattner-Institut

wurde für die neue IT-Sicher-

heitslösung CloudRAID

ausgezeichnet

Die Technologie-Roadmap
2016 der Bluetooth SIG dreht

sich um das Internet der Dinge

tors. »Aktuelle Prognosen ge-

hen bis zum Jahr 2025 von ei-

nem Marktpotenzial zwischen

2 und 11,1 Billionen US-Dollar

aus. Die technischen Updates

von Bluetooth im nächsten Jahr

werden dabei helfen, diese Er-

wartungen umzusetzen und das

Wachstum im IoT-Bereich zu

beschleunigen.«

www.bluetooth.com

Hasso-Plattner-Institut (HPI)

Auszeichnung für
CloudRAID

Das Hasso-Plattner-Institut

(HPI) ist für sein Softwaresys-

tem CloudRAID mit dem Inno-

vationspreis 2015 des IT-Sicher-

heitsverbands TeleTrust ausge-

zeichnet worden.

Das Softwaresystem stellt

eine Zwischeninstanz zwischen

Anwendern und Anbietern von

Speicherressourcen in der Cloud

dar. Ein erster CloudRAID-Pro-

totyp funktioniert mit Desktop-

PCs, Webbrowsern und mobilen

Endgeräten (Android und iOS).

Alle Dateien eines Nutzers wer-

den in Blöcke aufgespalten und

verschlüsselt. Danach werden

die Datenpakete auf verschie-

dene, voneinander unabhängige

Dienstleister verteilt. Die Daten

können über verschiedene Ge-

räte hinweg synchronisiert sowie

mit anderen Nutzern geteilt

werden. Dabei verbleibt das

Schlüsselmaterial ausschließlich

beim Nutzer selbst oder wird auf

sichere Weise an autorisierte

Nutzer weitergegeben, sodass

Speicher- und Dienstbetreiber

von CloudRAID selbst niemals

auf Inhalte zugreifen können.

RAID-Algorithmen ermögli-

chen es zudem, flexibel defi-

nierbare Anforderungen an Ver-

fügbarkeit und Ausfallsicherheit

der Daten umzusetzen. Sowohl

öffentliche als auch private

Speicher-Anbieter können ge-

nutzt werden. Für das Identi-

tätsmanagement sorgt ein un-

abhängiger Dienst der Bundes-

druckerei, der unterschiedlich

starke Authentifizierungs-

Methoden anbietet - vom

Passwort über kryptografische

Token bis hin zu Chipkarten wie

dem neuen Personalausweis.

Anwender bestimmen selbst,

wie beim Zugriff auf geteilte

Daten die Identität beim Ge-

genüber nachgewiesen werden

soll. Bei besonders vertrauli-

chen Daten wie amtlichen Do-

kumenten könnte das zum Bei-

spiel nur mit der stärksten Au-

thentifizierung und damit zu-

verlässigster Verifikation der

Identität geschehen.

www.hpi.de

Mobile-Maturity-Studie von
Red Hat

Mehr Geld für mobile
Applikationen

Laut einer Studie von Red Hat

wollen 90 Prozent der Befrag-

ten in den nächsten zwölf Mo-

naten ihre Ausgaben für die

Entwicklung mobiler Applika

tionen steigern - um durch-

schnittlich 24 Prozent.

Die aktuelle Mobile Maturity

Survey von Red Hat schließt an

die Ergebnisse einer Umfrage

von FeedHenry, dem Anbieter

einer App-Entwicklungsplatt-

form, an, den Red Hat im Okto-

ber 2014 übernahm.

Im Verlauf ihrer vermehrten

Investitionstätigkeit im Mobile-

Bereich verfolgen Unternehmen

zunehmend einen kooperativen

Mobiler Kunden-Support
Support-Lösungen halten

bislang nicht Schritt mit

der Verbreitung mobiler

Anwendungen, findet

Citrix. Sobald die App auf

dem Smartphone streike,

würden herkömmliche

Desktop-Programme zur

Fernwartung an ihre Gren-

zen stoßen. Dies möchte

Citrix mit zwei Lösungen

ändern: Citrix Concierge

und GoToAssist Seeit.

Per App können die

Nutzer von Citrix Concierge

in Kontakt mit dem Sup-

port treten und sich helfen

lassen. Und mit GoToAssist

Seeit können Kunden das

Kamerabild ihres Mobil

geräts streamen und so

Missverständnisse bei der

mündlichen Beschreibung

von Problemen vermeiden.

»Organisationen kon-

zentrieren sich immer stär-

ker auf mobile Anwendun-

gen, dennoch bleibt ein in-

telligenter, schneller und

hochwertiger Support für

diese Nutzungsart eine

Herausforderung. Citrix

Concierge und GoToAssist

Seeit geben Unternehmen

die Möglichkeit, ihren Sup-

port mit personalisierten

Kundeninteraktionen über

Video, Kamera und Chat

auf die nächste Ebene zu

bringen«, beschreibt Rou-

ven Mayer, Senior Manager

bei Citrix, die neuen

Lösungen.

www.citrix.de

News

Fo
to

s:
 S

hu
tt

er
st

oc
k

/
si

m
o9

88

www.webundmobile.de  1.2016

Erfahrung dank branchennaher Nebenjobs
29 Prozent aller akademischen Absolventen bringen in ihre erste Festanstellung

bei Internetunternehmen bereits berufliche Vorerfahrungen aus branchennahen

Nebenjobs mit.

Damit liegt diese Branche, gemeinsam mit dem IT/ Soft-/Hardware-Bereich, auf

dem ersten Platz unter 24 analysierten Branchen. Das ist das Ergebnis einer Befra-

gung unter 20.000 Studenten im Rahmen der Studienreihe »Fachkraft 2020« von

Studitemps.de und dem Department of Labour Economics der Maastricht Universi-

ty. Bei der Frage nach dem erwarteten Einstiegsgehalt (41.441 Euro) oder der antizi-

pierten Jobzufriedenheit (7,14 von 10) sowie der Sorge vor anfänglicher Arbeitslosig-

keit (27 Prozent) erreicht die Internetbranche in der Studie dagegen nur durch-

schnittliche Ergebnisse.

Top-Wunscharbeitgeber für Studierende im Bereich Internet ist Google: 31,2 Pro-

zent der Studenten würden gerne für den US-Konzern arbeiten. Mit deutlichem

Abstand landet Microsoft (14 Prozent) auf dem zweiten Platz, dicht gefolgt vom

ewigen Konkurrenten Apple mit 12,0 Prozent. Amazon schafft es mit einem zwei-

stelligen Prozentwert (10,3 Prozent) auf Platz vier der studentischen Wunschliste,

Facebook belegt mit 7,2 Prozent den fünften Rang.

Studitemps-Geschäftsführer Eckhard Köhn: »Die branchentypische kreative Auf-

bruchstimmung bei vielen Internetunternehmen führt zu einer hohen Attraktivität

bei Studentinnen und Studenten. Dabei ergeben sich bereits im Studium viele Mög-

lichkeiten, hier beruflich Erfahrungen zu sammeln.

Studienreihe »Fachkraft 2020«

www.hanser-fachbuch.de/computer

ISBN 978-3-446-44574-1

ISBN 978-3-446-44566-6

ISBN 978-3-446-44431-7

Fachbücher zum

Appheben!

ISBN 978-3-446-44574-1

ka
ro
lin

a
S

C
H

IL
LI

N
G

UI-/UX-Design
Team-Working mit Entwicklern
Techniken & Tools

Apps machen
Der Kompaktkurs für Designer
Von der Idee bis zum klickbaren Prototyp

erscheint
03/ 2016

CHV_web+mobile_01_2016.indd 1 13.10.15 13:25

Google

Microsoft

31,2 %

7,2 %
10,3 %

14,0 %

12,0 %

Xing  2,3 %

Zalando  2,5 %

Ebay  3,0 %

Paypal  3,5 %

Airbnb  4,6 %

Facebook
Amazon

Apple

web & mobile developer 1/2016� Quelle: Studitemps

Die Top-10-Wunscharbeitgeber im Bereich der Internetunternehmen

Anteil aller Branchen-
Interessenten

Internetunternehmen profitieren von Studierenden mit viel
Berufserfahrung

41.400

29 %

13 % 27 %

2,28

Gehalts-
wunsch

Vorerfahrung

Notendurchschnitt

Bachelor-Anteil

7,14/10
Jobzufriedenheit

Sorge vor anfänglicher
Arbeitslosigkeit

▶

10 1.2016  www.webundmobile.de

NewsAktuell

derungen der Backend-Integ-

ration zu meistern. Deren Anteil

wird in den nächsten beiden

Jahren voraussichtlich auf

36 Prozent steigen.

Ein neues Zeitalter der

leichtgewichtigen Program-

miersprachen hat begonnen.

Ein Viertel der Befragten (26

Prozent) will in den nächsten

beiden Jahren primär Node.js

als Programmiersprache für die

Backend-Entwicklung nutzen;

15 Prozent setzen vorwiegend

auf Java und 19 Prozent auf

.NET. Aktuell verwenden

71 Prozent primär Java und

56 Prozent .NET.

Cathal McGloin, Vice Presi-

dent, Mobile Platforms bei Red

Hat, kommentierte die Ergeb-

nisse so: »Unternehmen erken-

nen die Bedeutung einer Mo

bile-Strategie. Es ist ein klarer

Trend in Richtung ausgereifter

Praktiken zu erkennen. Beispie-

le dafür sind die Zusammenar-

beit zwischen Fachbereichen

und IT, die zunehmende Ver-

breitung von Open-Source-

Software sowie der Einsatz von

MBaaS-Technologie und leicht-

gewichtiger Programmierspra-

chen. Vor dem Hintergrund der

Ergebnisse des Mobile Maturity

Survey gehen wir von einem

weiteren Wachstum im Bereich

der Entwicklung mobiler Appli-

kationen aus. Es gibt in den Un-

ternehmen noch viel zu tun auf

diesem Gebiet.«

www.redhat.com

Der Arbeitsmarkt in der IT-Branche
Was sind die wichtigsten Trends auf dem Arbeitsmarkt in der IT-

Branche? Wie sehen Chancen und Gehälter aus? Ein Trendreport

der Job-Suchmaschine Adzuna gibt einen aktuellen Überblick.

www.adzuna.de

Adzuna-Trendreport

5.000 10.000

Software-Ingenieur

Software-Architeckt

Java-Entwickler

C/C++-Entwickler

C#-Entwickler

Ahap-Entwickler

TYPO3-Entwickler

PHP-Entwickler

Anzahl offener Stellen

15.000

Der Vergleich der Durchschnittsgehälter mit dem Stellen-

angebot in Deutschland zeigt, dass qualifizierte Java-Ent-

wickler gesucht werden und dass Unternehmen auch bereit

sind, diese entsprechend zu bezahlen.

Die Gehälter in der IT-Branche sind nicht zyklisch und erle-

ben einen stetigen Anstieg von bis zu 2 Prozent pro Jahr. Da-

bei liegen die Löhne nur wenig über dem durchschnittlichen

deutschen Jahresgehalt.

20.000 40.000

Software-Ingenieur

Software-Architeckt

Java-Entwickler

C/C++-Entwickler

C#-Entwickler

Ahap-Entwickler

TYPO3-Entwickler

PHP-Entwickler

Durchschnittsgehälter

60.000

IT-Gehälter im Durchschnitt (€)

10.000

Durchschnitt in
Deutschland

20.000

30.000

40.000

50.000

0
Nach der

Ausbildung
Nach dem
Studium

Ansatz, bei dem die Fachberei-

che zusammen mit der IT eine

größere Rolle im Entschei-

dungsprozess spielen. Ein wei-

terer Trend ist die Einführung

neuer, agiler Technologien wie

Mobile Backend as a Service

(MBaaS) und leichtgewichtiger

Programmiersprachen, um die

Herausforderungen der mobilen

Entwicklung und Integration

bewältigen zu können.

Die transformative Kraft von

Mobile Computing spielt eine

wichtige Rolle für die Unter-

nehmensentwicklung. Ein Drit-

tel der Befragten (35 Prozent)

gab an, dass mobile Apps die

Unternehmensabläufe ändern,

indem Geschäftsprozesse neu

gestaltet werden. Weitere 37

Prozent sagten, dass Apps pri-

mär zur Automatisierung exis-

tierender Prozesse genutzt

werden. Ferner machen 24 Pro-

zent der Befragten ihre vorhan-

denen Webapplikationen mo-

bilfähig und verdeutlichen, dass

hier noch weiteres Potenzial

vorhanden ist.

Mehr als ein Drittel aller Be-

fragten (37 Prozent) haben ein

kollaboratives Mobile Center of

Excellence (MCoE) eingerichtet.

In mehr als der Hälfte der be-

fragten Unternehmen, die eine

Mobile-App-Strategie vollstän-

dig implementiert und über-

prüft haben, gibt es auch ein

MCoE. Dies könnte ein Indiz für

eine etablierte Mobility-Kultur

sein, bei der IT und Fachberei-

che optimal kooperieren, um

die Produktivität der Mitarbeiter

und das Customer Engagement

zu fördern.

Unternehmen nutzen Open-

Source-Software und MBaaS-

Technologie. Eine überwälti-

gende Mehrheit der Befragten

(85 Prozent) sagte, dass Open-

Source-Software wichtig für

ihre Strategie bei der Applika

tionsentwicklung ist. Außerdem

nutzen nahezu ein Drittel der

Befragten (31 Prozent) MBaaS-

Technologie, um die Herausfor-

Immer mehr Unternehmen

investieren verstärkt in den

Mobile-Bereich

web & mobile developer 1/2016

 Q
ue

lle
: A

dz
un

a
 Q

ue
lle

: A
dz

un
a

 Q
ue

lle
: A

dz
un

a

What is mobile?
Is it the latest communications device? The health monitor
on our wrist? The key to our digital security? Is it the
means to connect the unconnected or is it the screen that
entertains us? Mobile is all of this. But it's also so much
more. Mobile powers our lives. It’s an extension of who
we are. Mobile is connectivity. Mobile is identity. Mobile
is commerce. Mobile is inclusive. There is no clearer way to
say it. Everything is mobile, but more importantly:
Mobile Is Everything. See the phenomenon for yourself
in Barcelona at Mobile World Congress 2016.

WWW.MOBILEWORLDCONGRESS.COM

AN EVENT OF

News Aktuell

B2B-Vertrieb

Online-Einkauf auf
dem Vormarsch

Dank Internetsuche, digitaler

Kommunikation und Online-

Produktberatung laufen heute

57 Prozent des Einkaufsprozes-

ses online ab.

In Deutschland wie auch in

den USA sind fast 50 Prozent

der Einkaufsverantwortlichen

unter 35 Jahre alt. Das Informa-

tions-, Kommunikations- und

Beziehungsverhalten dieser Ge-

neration unterscheidet sich

maßgeblich von dem ihrer Vor-

gänger: Denn die sogenannten

Digital Natives sind es gewohnt,

Konsumgüter komfortabel on-

line zu kaufen, und übertragen

diese Erfahrungen auf das B2B-

Geschäft. Ihr Einkaufsprozess

findet daher häufig digital statt.

Bis sie schließlich erstmals

Kontakt zum Verkäufer aufneh-

men, sind so bereits 57 Prozent

des Entscheidungsprozesses

abgeschlossen.

»Damit wird die Digitalisie-

rung des Vertriebs zum wichti-

gen Erfolgsfaktor«, sagt Ralph

Lässig, Partner von Roland Ber-

ger. »Wer sich nicht an die Be-

dürfnisse dieser neuen Genera-

tion von Einkaufsentscheidern

anpasst, setzt langfristig seine

Wettbewerbsposition aufs

Spiel.«

Die Roland-Berger-Experten

haben gemeinsam mit Google

eine Umfrage unter knapp

3000 Vertriebsverantwortli-

chen in B2B-Unternehmen

durchgeführt und die Ergebnis-

se in ihrer Publikation »Die digi-

tale Zukunft des B2B-Vertriebs

- Warum Industriegüterunter-

nehmen sich auf veränderte

Anforderungen ihrer Kunden

einstellen müssen« zusam-

mengefasst.

Demnach sind sich zwar 60

Prozent der Befragten bewusst,

dass ein digitaler Vertriebskanal

künftig ausschlaggebend für

den Geschäftserfolg sein wird.

Doch gerade einmal 42 Pro-

zent der Unternehmen verfol-

gen auch eine Strategie zum

Ausbau digitaler Aktivitäten,

und 33 Prozent bieten noch

nicht einmal eine Online-Be-

stellung ihrer Produkte an.

www.rolandberger.com

Dreiländervergleich

Digitale Agenda 2020

Wie weit sind die Firmen der

DACH-Region mit der Digitali-

sierung, wollte die Dreiländer-

Studie »Digitale Agenda 2020«

von CSC wissen, für die 500 Un-

ternehmensentscheider in

Claus Schünemann: Vorsit-

zender der Geschäftsführung

CSC Deutschland

B2B: Auch hier wird verstärkt

online gehandelt

Fo
to

: C
SC

Fo
to

: F
re

ep
ik

.c
om

▶

12 1.2016  www.webundmobile.de

NewsAktuell

Deutschland, Österreich und

der Schweiz befragt wurden.

Offenbar am weitesten in der

Planungsphase ist die Schweiz.

Dort hat knapp jedes zweite

Unternehmen (48 Prozent) be-

reits eine digitale Agenda ver-

abschiedet. In Österreich sind es

42 Prozent, in Deutschland nur

35 Prozent.

Befragt nach dem Reifegrad

ihrer digitalen Projekte, schät-

zen sich jedoch die deutschen

Firmen (37 Prozent) am fortge-

schrittensten ein. In Österreich

und der Schweiz hält nur rund

jedes vierte Unternehmen den

eigenen digitalen Reifegrad für

hoch bis sehr hoch.

Als größte Stolpersteine für

die digitale Transformation se-

hen die Unternehmen zu wenig

Fachkräfte, Finanzierungslü-

cken und Mängel bei der Aus-

und Weiterbildung an.

»Die Digitalisierung traditio-

neller Unternehmen und Be-

hörden fordert grundlegend

neue Weichenstellungen für

Wettbewerb, Organisation und

Kompetenzen«, betont Claus

Schünemann, Vorsitzender der

Geschäftsführung von CSC

Deutschland. »Eine digitale

Agenda ist Fundament dafür,

mit einer klar definierten Stra-

tegie diese revolutionäre Trans-

formation erfolgreich umzu

setzen.«

www.csc.com

Sicherheitsmonitor 2015

IT-Schutz im Mittel-
stand stagniert

»Der Schutz im Mittelstand vor

Cyberangriffen stagniert trotz

wachsender Digitalisierung«,

bringt Hartmut Thomsen, der

amtierende Vorsitzende des

Vereins Deutschland sicher im

Netz (DsiN), den Sicherheits-

monitor Mittelstand 2015 auf

den Punkt.

Er basiert auf kontinuierli-

chen Befragungen von 7300

Firmen seit dem Jahr 2011. 65

Prozent der Mitarbeiter greifen

mittlerweile von außen auf das

interne Firmennetzwerk zu.

42 Prozent der Unternehmen

nutzen soziale Netzwerke – ein

Anstieg um 4 Prozent.

Gleichwohl trifft knapp jeder

zehnte Mittelständler keine

Schutzvorkehrungen (9 Pro-

zent) und mehr als jeder zweite

sichert den E-Mail-Verkehr

nicht zusätzlich gegen Fremd-

zugriff ab (55 Prozent) – 5 Pro-

zent mehr als 2011.

Besonders bedenklich: 73

Prozent der Firmen verzichten

laut Studie auf IT-Schulungen

ihrer Mitarbeiter und spielen

damit dem Social Engineering in

die Hände.

Tipps gegen solche Angriffe

geben die »Verhaltensregeln

zum Social Engineering« von

DsiN und Datev.

www.sicher-im-netz.de

Viele Bauchentscheidungen

Ignorierte BI-Tools

In Deutschland ist man vom

Ideal des datengetriebenen

Unternehmens noch weit ent-

fernt, sagt die Studie »Time is

Money« von BARC. Die Analys-

ten befragten 270 Anwender

aus dem deutschsprachigen

Raum zu ihrer Nutzung von Re-

port- und Analysesoftware.

Ergebnis: Nur 43 Prozent der

Entscheidungen beruhen auf

einer validen Datenbasis – in

kleineren und mittleren Unter-

nehmen sogar nur 37 Prozent.

Henrik Jörgensen, Country Ma-

nager bei Tableau Software,

dem Auftraggeber der Studie,

warnt: »Bauchentscheidungen

können ihre Berechtigung ha-

ben, zum Beispiel wenn es um

die Einstellung von Mitarbeitern

geht. Entscheidungen, die auf

der Basis von Daten getroffen

werden, sind aber in der Regel

wesentlich tragfähiger und

lassen sich auch besser eva

luieren.«

Laut BARC haben deutsche

Unternehmen allein 2014 fast

1,5 Milliarden Euro für entspre-

chende Software ausgegeben,

aber nur rund 15 Prozent der

Mitarbeiter arbeiten damit.

Abhilfe versprechen Self-

Service-BI-Tools, mit denen je-

der Mitarbeiter Daten sofort

analysieren und visualisieren

kann. Laut BARC schätzen die

Nutzer solcher Tools die Dauer

für die Erstellung eines Berichts

auf 20 Minuten. Reine Berichts-

empfänger dagegen müssten

länger als einen Tag auf Ergeb-

nisse warten.

http://barc.de/docs/
time-is-money

Mainframe Research Report

Firmen halten dem
Mainframe die Treue

BMC Software kommt im 10.

Mainframe Research Report zu

einem optimistischen Ausblick

für Großrechner. Bill Miller, Lei-

ter Solutions Optimization bei

BMC, sieht vor allem mobile

Services aufgrund ihres Bedarfs

an ständiger Verfügbarkeit als

Katalysator für das wachsende

Interesse an Mainframe-Tech-

nologie. Grund dafür sei vor al-

lem deren Fähigkeit zur Bereit-

stellung geschützter Daten in

Kombination mit ihrer hohen

Verfügbarkeit.

Hauptsächlich vier Gründe

sprechen nach den Aussagen

der 1202 befragten Mainframe-

Anwender aus aller Welt dafür,

am Mainframe festzuhalten

und Investitionen in diese Platt-

form zu tätigen: 56 Prozent se-

hen bei Großrechnern Vorteile

bezüglich Sicherheit der Zugrif-

fe, 55 Prozent in puncto Ver-

fügbarkeit.

48 Prozent schätzen am

Mainframe seine überlegenen

Fähigkeiten als zentraler Da-

ten-Server, 45 Prozent freuen

sich über den hohen Transak

tionsdurchsatz.

Angesichts dieser Stim-

mungslage ist es kein Wunder,

dass 83 Prozent mit stetig stei-

genden Investitionen in Main-

frame-Kapazitäten rechnen.

www.bmc.com

Hartmut Thomsen: Amtieren-

der DsiN-Vorsitzender

Großrechner im Kommen:
IBM LinuxONE Emperor

Fo
to

: S
A

P
Fo

to
: i

St
oc

k
/

Ja
ne

_K
el

ly

Fo
to

: I
B

M

Cyberangriffe: Schutz im

Mittelstand stagniert

Jetzt kostenlos testen:
www.internetworld.de/probelesen

E-Commerce I Online-Marketing I Technik
Sichern Sie sich jetzt 4 kostenlose Ausgaben der
INTERNET WORLD Business inklusive Business-Newsletter.

Die 14-tägige Fachzeitschrift für Digital Professionals!

14 1.2016  www.webundmobile.de

VersionsverwaltungFeature

Versionsverwaltungssysteme (oft wird auch die Abkür-

zung VCS für Version Control Systems verwendet) wer-

den innerhalb von Softwareprojekten dazu verwendet, Ände-

rungen am Quelltext über die Zeit hinweg zu protokollieren.

Der Vorteil davon dürfte klar sein: Möchte man auf einen

alten Zustand des Quelltextes zugreifen, kann man dies be-

quem über das VCS tun. Zudem kann man Änderungen an

Dateien leicht nachvollziehen und notfalls wieder zu alten

Zuständen zurückkehren. Und: Für das professionelle Arbei-

ten im Team sind Versionsverwaltungssysteme quasi uner-

lässlich.

Bei Versionsverwaltungssystemen unterscheidet man prin-

zipiell zwischen zwei verschiedenen Ansätzen, nämlich zwi-

schen zentralen VCS und dezentralen VCS. Zentrale VCS

waren lange Zeit der Standard in der professionellen Soft-

ware-Entwicklung. Beispiele hierfür wären CVS oder Sub-

version (kurz SVN).

Das Versionsverwaltungssystem Git unterscheidet sich in vielerlei Hinsicht von anderen

Versionsverwaltungssystemen.

Git kompakt
Versionsverwaltung mit Git

Die Idee bei zentralen VCS ist, dass alle versionierten Da-

teien eines Softwareprojekts innerhalb eines sogenannten

Repositorys auf einem zentralen Server verwaltet werden, auf

welches dann jeder Entwickler eines Entwicklerteams zu-

greifen kann. Als Entwickler holt man sich (über entspre-

chende CVS- oder Subversion-Befehle) die Dateien eines

Projekts, mit denen man arbeiten möchte, auf den eigenen

Rechner, bearbeitet sie oder fügt neue Dateien hinzu und syn-

chronisiert anschließend (ebenfalls über entsprechende Be-

fehle) wieder mit dem zentralen Server. Bild 1 veranschaulicht

diese Vorgehensweise.

Der Nachteil von zentralen VCS ist, dass der entsprechen-

de Server, auf dem das Repository liegt, immer zur Verfügung

stehen muss, um eigene Änderungen hochladen oder Aktu-

alisierungen anderer Entwickler aus dem System auf den ei-

genen Rechner herunterladen zu können. Steht der Server

dagegen nicht zur Verfügung, hat man als Entwickler erst

Fo
to

: M
at

hi
as

 V
ie

tm
ei

er

15www.webundmobile.de  1.2016

Versionsverwaltung Feature

einmal ein Problem. Noch schlimmer ist

es, wenn der Server beziehungsweise

dessen Festplatte, auf der die gesamten

Daten gespeichert sind, kaputt geht.

Dann ist die Historie der Daten näm-

lich unwiederbringlich verloren – es sei

denn, man hat vorher ein Backup ge-

macht, was in der Regel genau dann

nicht der Fall ist. Das Einzige, was in ei-

nem solchen Fall bleibt, ist der aktuelle

Stand der Daten, den die Entwickler je-

weils auf ihrem Rechner haben.

Lokale Repositories
Genau diese beiden angesprochenen

Probleme adressieren dezentrale bezie-

hungsweise verteilte Versionskontroll-

systeme wie beispielsweise Mercurial

oder das im Folgenden vorgestellte und

in den vergangenen Jahren immer be-

liebter gewordene Git.

Der Unterschied von dezentralen

VCS zu zentralen VCS ist, dass die ein-

zelnen Entwickler nicht mehr nur die

letzte Version der Daten auf ihrem

Rechner haben, sondern eine vollstän-

dige Kopie des gesamten Repositorys

(Bild 2), sogenannte lokale Repositories.

Der eine Vorteil: In solche lokalen Re-

positories können Entwickler Änderun-

gen an den Daten hochladen, ohne mit

dem Server verbunden zu sein, und

später – wenn wieder eine Verbindung

besteht – das lokale Repository mit dem

entfernten Repository (dem Remote Re-

pository) synchronisieren.

Der andere Vorteil: Wird der Server in irgendeiner Form

beschädigt, sodass die Daten im dortigen (zentralen) Reposi-

tory verloren gehen, können diese von jedem beliebigen Ent-

wicklerrechner (vorausgesetzt dieser hat den letzten Stand)

komplett – das heißt inklusive der gesamten Historie – wie-

derhergestellt werden.

Auch ohne Server
Hinzu kommt, dass die Entwickler auch ohne Server unterei-

nander ihre Repositories synchronisieren können, was be-

züglich der Workflows gegenüber zentralen VCS ganz ande-

re Möglichkeiten eröffnet.

Auch die Art und Weise, wie Git Informationen zu den Da-

ten im Repository speichert, unterscheidet sich grundlegend

von den meisten anderen Versionskontrollsystemen (unab-

hängig davon ob zentral oder dezentral).

Während in den meisten anderen VCS nämlich ausgehend

von der ersten Version einer Datei alle Informationen als Lis-

te von Änderungen gespeichert werden (in Form sogenann-

ter Deltas), speichert Git bei jedem Commit den kompletten

Zustand sämtlicher Dateien des jeweiligen Repositorys

(Bild 3).

Git macht also bei jedem Commit einen Snapshot des ge-

samten Repositorys (Bild 4). Was auf den ersten Blick nach

reichlich Speicherverschwendung aussieht, ist in der Pra-

Dezentral: Bei dezentralisierten Versionskontrollsystemen gibt es mehrere Versionen des

Repositorys (Bild 2)

Zentral: Bei zentralisierten Versionskontrollsystemen befindet

sich das Repository auf einem zentralen Server (Bild 1) ▶

16 1.2016  www.webundmobile.de

VersionsverwaltungFeature

xis relativ speicherschonend. So werden beispielsweise für

unveränderte Dateien keine neuen Kopien erzeugt, sondern

lediglich Verknüpfungen angelegt.

Ein weiterer Unterschied von Git zu anderen VCS ist die

Anzahl an Orten für das Speichern von Daten. In den meis-

ten anderen VCS gibt es zwei Orte dafür: auf der einen Seite

die lokale Arbeitskopie (das Working Directory), also die Da-

ten, die man als Entwickler gerade verwendet, sowie auf der

anderen Seite das Repository, also die Daten, die bereits über-

tragen (committet) wurden. In Git dagegen gibt es neben die-

sen beiden Bereichen noch einen weiteren Speicherort, den

sogenannten Staging-Bereich (auch Index oder Staging Area

genannt (Bild 5).

Hier stellt man die Änderungen, die man an der Arbeitsko-

pie gemacht hat und in das Repository übertragen (das heißt,

committen) möchte, gezielt zusammen.

Arbeitsverzeichnis und Repository
Der Vorteil dieses dritten Bereichs und der damit verbunde-

nen Entkopplung zwischen Arbeitsverzeichnis und dem Re-

pository ist, dass man bei der Zusammenstellung eines Com-

mits viel flexibler ist. Einen Überblick über die wichtigsten

Begriffe rund um Git bietet Tabelle 1.

Die Installation von Git ist unabhängig vom verwendetem

Betriebssystem relativ einfach. Unter Linux verwendet man

je nach Distribution yum oder

apt-get. Sie nutzen also entwe-

der folgenden Befehl für yum:

$ sudo yum install git

Oder Sie verwenden folgenden

Befehl im Fall von apt-get:

$ sudo apt-get install git

Für Windows und Mac OS X

dagegen können von der Git-

Homepage entsprechende In

stallationsdateien herunterge

laden werden. Die darüber ge-

starteten Installationsprogramme dürften dann eigentlich

selbsterklärend sein.

Nutzernamen und E-Mail-Adresse
Nach der Installation von Git steht das VCS unter dem Befehl

git zur Verfügung. Als Erstes sollte man über den Befehl git

config den Nutzernamen und die E-Mail-Adresse konfigurie-

ren, die standardmäßig mit jedem Commit, den man durch-

führt, verknüpft werden (bei Bedarf kann beides später auch

projektabhängig beziehungsweise für jedes Repository ein-

zeln festgelegt werden):

$ git config --global user.name "Max Mustermann"

$ git config --global user.email

"max.mustermann@example.com"

Der erste Schritt nach Installation und Konfiguration ist es, ein

neues Git-Repository anzulegen. Dies macht man nicht nur

einmal, sondern für jedes Projekt, das man über Git versio-

nieren möchte. Um ein neues lokales Git-Repository anzule-

gen, gibt es prinzipiell zwei Möglichkeiten.

Zum einen kann man ein Verzeichnis auf dem eigenen

Rechner als Git-Repository initialisieren, zum anderen kann

man ein bestehendes Repository von einem anderen Rechner

(beziehungsweise von einem Server) auf den eigenen Rech-

ner herunterladen beziehungs-

weise klonen. Um ein lokales

Verzeichnis als Git-Repository

zu initialisieren, führt man den

Befehl git init aus:

$ mkdir example-project

$ cd example-project

$ git init

Initialized empty Git

repository in

/example-project/.git/

Im Hintergrund wird dadurch im

jeweiligen Projektordner (hier:

Deltas: Die meisten Versionskontrollsysteme speichern nur die Änderungen (Deltas) an den

Daten (Bild 3)

Version: In Git wird bei jedem Commit eine vollständige Version (Snapshot) des gesamten

Repositorys gespeichert (Bild 4)

17www.webundmobile.de  1.2016

Versionsverwaltung Feature

example-project) das Verzeichnis .git erzeugt, in

dem Git anschließend alle Informationen über das

Repository speichert, beispielsweise die Historie

der Dateien und Verzeichnisse im jeweiligen Re-

pository (Bild 6).

Der Befehl git init dient lediglich dazu, das ent-

sprechende Verzeichnis als Git-Repository zu initi-

alisieren. Alle eventuell dort vorhandenen Dateien

und Unterverzeichnisse werden durch diesen Be-

fehl noch nicht automatisch zum Repository hinzu-

gefügt, sondern befinden sich zunächst noch im

eben erwähnten Arbeitsbereich.

Staging-Bereich
Um diese Dateien zum Repository hinzuzufügen, muss man

sie also zuerst in den Staging-Bereich und anschließend ins

Repository übertragen. Ersteres, also das Hinzufügen von Da-

teien zum Staging-Bereich, erreicht man über den Befehl git

add:

$ git add *.js

$ git add **/*.js

$ git add package.json

Wenn man alle Dateien zum Staging-Bereich hinzugefügt

hat, die in einem Commit enthalten sein sollen, kann man die-

se schließlich über den Befehl git commit in das lokale Repo-

sitory übertragen:

$ git commit -m "Initial commit"

Die Ausgabe lautet dann zum Beispiel wie folgt:

[master (root-commit) 671cbc4] Initial commit

 4 files changed, 14 insertions(+)

 create mode 100644 index.js

 create mode 100644 lib/examples.js

 create mode 100644 package.json

 create mode 100644 tests/examples-tests.js

Durch dieses zweistufige Übertragen der Daten vom Arbeits-

bereich in das Repository ist es möglich, Änderungen an ver-

schiedenen Dateien gezielt zu einem Commit zusammenzu-

fassen und diese gebündelt in das Repository zu übertragen.

Wählt man dann noch aussagekräftige Commit Messages,

führt dies zu einer übersichtlichen Änderungshistorie.

Nach dem Committen befinden sich die Dateien im lokalen

Repository, das Arbeitsverzeichnis dagegen enthält keine

Änderungen mehr. Überprüfen lässt sich das über den Befehl

git status, über den sich zu jedem Zeitpunkt nützliche Status-

informationen zum Repository abrufen lassen. Wenn Sie nun

den Befehl aufrufen, sollte die Ausgabe wie folgt lauten:

$ git status

On branch master

nothing to commit, working directory clean

Mit anderen Worten: Der Arbeitsbereich enthält keine Ände-

rungen, die committet werden könnten.

Staging-Bereich: Im Unterschied zu den meisten anderen Versionskontroll-

systemen sind Arbeitsbereich und Repository in Git durch den zusätzlichen

Staging-Bereich voneinander entkoppelt (Bild 5)

Infos: Im .git-Verzeichnis speichert Git alle relevanten Informa

tionen zum Repository (Bild 6)

Tabelle 1: Grundbegriffe in Git

Begriff Bedeutung

Repository Enthält alle Dateien eines (Software-)
Projekts inklusive vorausgegangener
Versionen

Remote Repository Entferntes Repository

Working Directory Arbeitsbereich

Index / Staging Area Bereich, in dem Änderungen zum
Übertragen in das lokale Repository
vorbereitet werden

Commit Übertragen der Änderungen aus dem
Staging-Bereich in das lokale Repository

Push Übertragen der in das lokale Repository
übertragenen Änderungen in das Remote
Repository

Pull Übertragen der Änderungen aus dem
Remote Repository in das lokale Repository

Checkout Holen einer Arbeitskopie aus einem Branch
oder einem Commit

Clone Kopieren eines Remote Repositorys

Branch Ein separater Entwicklungszweig

Merge Zusammenfügen von Änderungen von
einem Branch in einen anderen Branch

Fork Ableger eines Repositorys

HEAD Aktueller Branch
▶

18 1.2016  www.webundmobile.de

VersionsverwaltungFeature

Dateien können in Git einen von mehreren Zuständen an-

nehmen: untracked (beziehungsweise unversioniert) bedeu-

tet, dass eine Datei noch gar nicht von der Versionskontrolle

berücksichtigt wird, modified (beziehungsweise bearbeitet)

bedeutet, dass die Datei seit dem letzten Commit geändert

wurde, unmodified (beziehungsweise unbearbeitet) dage-

gen, dass sie seit dem letzten Commit nicht verändert wurde

und staged, dass eine geänderte Datei für den nächsten Com-

mit vorgesehen ist (Bild 7).

Ändert man nun Dateien in der Arbeitskopie oder fügt man

neue Dateien hinzu, dann kann man über git status heraus-

finden, welche Dateien davon betroffen sind und welchen

Status diese Dateien haben:

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be

 committed)

(use "git checkout -- <file>..." to discard changes in

 working directory)

modified: lib/examples.js

Untracked files:

(use "git add <file>..." to include in what will be

 committed)

lib/examples2.js

tests/examples2-tests.js

no changes added to commit (use "git add" and/or

"git commit -a")

Die obige Ausgabe besagt beispielsweise, dass eine Datei

verändert wurde (lib/examples.js) und dass zwei Dateien als

untracked erkannt wur-

den, sprich bisher nicht

versioniert werden (lib/

examples2.js und tests/

examples2-tests.js). Au-

ßerdem ist erkennbar,

dass die Änderungen an

der geänderten Datei

sich nur im Arbeitsbe-

reich, nicht aber im Sta-

ging-Bereich befinden (zu erkennen an der Ausgabe Chan-

ges not staged for commit). Über git add und git commit könn-

te man die Änderungen nun wieder in das Repository über-

tragen.

Unabhängig davon befinden sich allerdings alle Commits

bisher nur in dem lokalen Repository. Der nächste Schritt be-

steht also darin, ein entferntes Repository (das Remote Repo-

sitory) einzurichten. Hat man dagegen ein bereits existieren-

des Remote Repository über den Befehl git clone auf den ei-

genen Rechner geklont, entfällt dieser Schritt natürlich, denn

dann steht das Remote Repository bereits fest.

Ein neues Remote Repository lässt sich über den Befehl git

remote add hinzufügen:

$ git remote add origin ssh://cleancoderocker@workspace/

volume1/repository/example-project.git/

Der erste Parameter (im Beispiel origin) bezeichnet den Kurz-

namen des Repositorys, über das sich das Repository an-

schließend bei der Formulierung von Git-Befehlen anspre-

chen lässt. Der zweite Parameter bezeichnet den URL des Re-

mote Repositorys.

Remote Repository
Um nun die Commits aus dem lokalen Repository in das Re-

mote Repository zu übertragen, verwendet man den Befehl

git push. Diesem Befehl übergibt man als ersten Parameter

den Namen des Remote Repositorys (denn prinzipiell können

mit einem lokalen Repository auch mehrere Remote Repo

sitories verknüpft sein) sowie als zweiten Parameter den

Branch, aus dem die Commits übertragen werden sollen.

Standardmäßig handelt es sich dabei um den sogenannten

Master-Branch:

$ git push origin

master

Counting objects: 12,

done.

Delta compression using

up to 4 threads.

Compressing objects:

100% (9/9), done.

Writing objects:

100% (12/12), 1.05 KiB

| 0 bytes/s, done.

Total 12 (delta 1),

reused 0 (delta 0)

Dateien können in Git verschiedene Zustände einnehmen (Bild 7)

Kommandos: Die verschiedenen Git-Kommandos in der Übersicht (Bild 8)

19www.webundmobile.de  1.2016

Versionsverwaltung Feature

To ssh://cleancoderocker@workspace/volume1/repository/

example-project.git/

 * [new branch] master -> master

Wenn man im Team arbeitet, dann ist es in der Regel so, dass

man, bevor man seine eigenen Änderungen (beziehungswei-

se Commits) in das Remote Repository pusht, die Änderun-

gen anderer Entwickler aus dem Remote Repository auf den

eigenen Rechner beziehungsweise in das lokale Repository

überträgt. Dies erledigt man über den Befehl git fetch, dem

man als Parameter den Namen des Remote Repositorys über-

gibt:

$ git fetch origin ▶

Tabelle 2: Die wichtigsten Git-Kommandos

Befehl Beschreibung

Erzeugen eines Repositorys

git init Initialisieren eines neuen Git-Repositorys

git clone
ssh://<username>
@<domain>/
<repositoryname>.git

Klonen eines bestehenden Repositorys auf
Basis des übergebenen URL

git clone git@github.
com:<username>/
<repositoryname>

Klonen eines bestehenden Repositorys auf
Basis des übergebenen GitHub-URL

Lokale Änderungen

git status Ausgabe von Statusinformationen

git diff Anzeigen von Änderungen der
versionierten Dateien

git add . Hinzufügen aller lokalen Änderungen zum
nächsten Commit

git add -p DATEI Hinzufügen der Änderungen an einer Datei
zum nächsten Commit

git commit -a Commit aller getrackten Änderungen

git commit -m "Update" Commit der Änderungen aus dem
Staging-Bereich

git commit --amend Ändern des letzten Commits
(Achtung: keine Commits ändern, die
bereits in ein Remote Repository
hochgeladen wurden)

Commit-Historie

git log Ausgabe aller Commits, beginnend mit dem
letzten Commit

git log -p <file> Ausgabe aller Commits für eine Datei,
beginnend mit dem letzten Commit

git blame <file> Ausgabe, wer wann welche Änderungen an
einer Datei vorgenommen hat

git stash Übertragen der lokalen Änderungen aus
dem Arbeitsbereich in Zwischenspeicher

git stash pop Übertragen der lokalen Änderungen aus
Zwischenspeicher in den Arbeitsbereich

Branches und Tags

git branch -av Auflisten aller Branches

git checkout <branch> Wechseln in einen bestehenden Branch

git branch <branch> Anlegen eines neuen lokalen Branchs

git checkout --track
<remote>/<branch>

Anlegen eines neuen lokalen Branchs auf
Basis eines Remote Branchs

Befehl Beschreibung

git branch -d <branch> Löschen eines lokalen Branchs

git tag <tagname> Hinzufügen eines Tags zum aktuellen
Commit

Update und Publish

git remote -v Auflisten aller Remote Repositories

git remote show
<remote>

Anzeigen der Informationen zu einem
bestimmten Remote Repository

git remote add
<shortname> <url>

Hinzufügen eines neuen Remote
Repositorys

git fetch <remote> Herunterladen aller Änderungen vom
Remote Repository, aber keine Integration
in HEAD

git pull <remote>
<branch>

Herunterladen aller Änderungen vom
Remote Repository und direkte Integration
beziehungsweise Merging in HEAD

git push <remote>
<branch>

Hochladen der lokalen Änderungen zum
Remote Repository

git branch -dr
<remote>/<branch>

Löschen eines Branches im Remote
Repository

git push --tags Hochladen der Tags zum Remote
Repository

Merge und Rebase

git merge <branch> Merging der Änderungen aus einem Branch
in den aktuellen HEAD

git rebase <branch> Rebase des aktuellen HEADs auf den
angegebenen Branch

Undo

git reset --hard HEAD Verwerfen aller lokalen Änderungen im
Arbeitsbereich

git checkout HEAD <file> Verwerfen der lokalen Änderungen an einer
einzelnen Datei im Arbeitsbereich

git revert <commit> Rückgängigmachen eines Commits

git reset --hard <commit> Zurücksetzen des HEADs auf einen frühe-
ren Commit und Verwerfen aller seitdem
stattgefundenen lokalen Änderungen

git reset <commit> Zurücksetzen des HEADs auf einen frühe-
ren Commit und Behalten aller seitdem
stattgefundenen lokalen Änderungen

git reset --keep
<commit>

Zurücksetzen des HEADs auf einen frühe-
ren Commit und Behalten aller seitdem
stattgefundenen lokalen Änderungen, die
noch nicht committet wurden

20 1.2016  www.webundmobile.de

VersionsverwaltungFeature

Dadurch werden alle Commits aus dem Remote Repository,

die sich noch nicht im lokalen Repository befinden, genau

dorthin übertragen, und zwar in sogenannte Remote Bran-

ches, sprich Entwicklungszweige, die parallel zu dem Haupt-

entwicklungszweig existieren.

Auf diese Weise hat man Gelegenheit, entsprechende Än-

derungen zu begutachten, bevor man sie anschließend in den

eigenen Master-Branch übernimmt. Letzteres wiederum ge-

schieht über den Befehl git merge, dem der Name des Remo-

te Branchs als Parameter übergeben wird:

$ git merge origin/master

Hierbei kann es passieren, dass Änderungen anderer Ent-

wickler Konflikte mit den eigenen Änderungen auslösen.

Diese können dann per Hand über die Kommandozeile oder

über den jeweils verwendeten Editor oder die jeweils ver-

wendete Entwicklungsumgebung gelöst werden. Alternativ

zu der Kombination aus git fetch und anschließendem git

merge kann man auch den Befehl git pull verwenden, der

quasi implizit beide Schritte hintereinander ausführt.

Bild 8 fasst noch einmal die wichtigsten Befehle rund um

das Arbeiten mit Git zusammen und zeigt den Zusammen-

hang zu den einzelnen Git-Bereichen. Eine detaillierte Über-

sicht über eine Auswahl in der Praxis gebräuchlicher Befehle

finden Sie zudem in Tabelle 2.

Unabhängige Entwicklungszweige
Ein wesentlicher Bestandteil bei der Arbeit mit Git sind soge-

nannte Branches. Dabei handelt es sich um unabhängige Ent-

wicklungszweige, über die es möglich ist, unabhängig vom

Hauptentwicklungszweig neue Features zu entwickeln oder

Bugfixing zu betreiben. Standardmäßig arbeitet man wie be-

reits gesagt auf dem Master-Branch (der durch den Befehl git

init standardmäßig angelegt wird).

Über den Befehl git branch lassen sich alle diejenigen

Branches eines Repositorys auflisten, welches momentan für

das Beispiel lediglich einen Branch, nämlich den Master-

Branch, auflistet:

$ git branch

* master

Neue Branches können dagegen über den Befehl git branch

BRANCH erzeugt werden, wobei für BRANCH der Name des

neuen Branches einzusetzen ist.

$ git branch feature-xyz

$ git branch

feature-xyz

* master

Branches sind in Git ein wichtiger Bestandteil für den Ent-

wicklungsprozess: Möchte man beispielsweise ein neues

Feature hinzufügen oder einen Fehler beseitigen (Stichwort

Bugfixing), so erzeugt man in der Regel einen neuen Branch,

um die jeweils damit verbundenen Änderungen von dem

Quelltext des Hauptentwicklungszweigs abzukapseln. Auf

diese Weise stellt man sicher, dass instabiler Code nicht di-

rekt in den Hautpentwicklungszweig übertragen wird.

Bild 9 veranschaulicht diese Vorgehensweise. Neben dem

Master-Branch sind hier zwei isolierte Entwicklungslinien zu

sehen: zum einen ein Feature-Branch, zum anderen ein Bug-

fix-Branch.

Um einen Branch zu wechseln, verwendet man den Befehl

git checkout BRANCH, wobei BRANCH wieder für den Na-

men des Branchs steht, in den man wechseln möchte. Um bei-

spielsweise in den eben angelegten Branch feature-xyz zu

wechseln, schreibt man Folgendes:

$ git checkout feature-xyz

Anschließend erhält man als Bestätigung die Meldung Swit-

ched to branch feature-xyz.

Dass man sich in dem neuen Branch befindet, kann man

auch jederzeit über den Befehl git branch überprüfen: Der

aktive Branch ist in der anschließenden Ausgabe mit einem

*-Symbol gekennzeichnet:

$ git branch

* feature-xyz

master

Ist man mit einem neuen Feature oder dem Beheben eines

Bugs im entsprechenden Branch fertig und möchte die damit

Branches: Über separate Branches lassen sich neue Features und

Bugfixing vom Hauptentwicklungszweig abkapseln (Bild 9)

Merge: Änderungen aus den Branches lassen sich über git merge

wieder in den Hauptentwicklungszweig übertragen (Bild 10)

21www.webundmobile.de  1.2016

Versionsverwaltung Feature

verbundenen Änderungen in den Hauptentwicklungszweig

übernehmen, wechselt man zunächst in den Branch, in den

die Änderungen übernommen werden sollen, und verwendet

anschließend den Befehl git merge:

$ git checkout master

$ git merge feature-xyz

Merge made by the 'recursive' strategy.

 lib/examples.js | 2 ++

 1 file changed, 2 insertions(+)

Im anschließend erscheinenden Kommandozeilendialog hat

man die Möglichkeit, die Commit-Meldung anzupassen –

standardmäßig Merge branch BRANCH, wobei BRANCH

wieder für den Branchnamen steht. Bild 10 veranschaulicht

das Prinzip.

Stashing
Wenn man mit mehreren Branches arbeitet, kann es bei der

Entwicklung durchaus sein, dass man immer wieder zwi-

schen verschiedenen Branches hin- und herwechseln muss,

beispielsweise weil man gerade an zwei verschiedenen Fea-

tures arbeitet. Oft hat man dann den Fall, dass man von dem

einen in den anderen Branch wechseln möchte, allerdings im

jeweiligen Arbeitsbereich bereits Änderungen gemacht hat

und diese – weil sie eventuell noch nicht fertig sind – noch

nicht committen möchte.

Dann steht man vor einem Problem: Würde man nämlich

trotz der Änderungen im Arbeitsbereich in den anderen

Branch wechseln, gingen die Änderungen verloren. Doch Git

bietet diesbezüglich eine Lösung an: den sogenannten Stash,

eine Art Zwischenspeicher, in dem genau zu oben genann-

tem Zweck Änderungen an den Daten zwischengespeichert

und später wieder abgerufen werden können (Bild 11).

Um alle lokalen Änderungen im Arbeitsbereich in diesen

Zwischenspeicher zu bewegen, reicht die Eingabe des Be-

fehls git stash:

$ git stash

Saved working directory and index state WIP on master:

f141859 Merge branch 'feature-xyz'

HEAD is now at f141859 Merge branch 'feature-xyz'

Anschließend ist der jeweilige Arbeitsbereich wieder frei von

Änderungen und es kann problemlos in einen anderen

Branch gewechselt werden.

Der Befehl git stash lässt sich – Änderungen im Arbeitsbe-

reich vorausgesetzt – auch mehrmals anwenden. Die jeweili-

gen Änderungen werden dann – wie bei einem Stack – auf-

einander gespeichert, sprich die zuerst gestashten Änderun-

gen liegen unten in diesem Stack, die zuletzt gestashten Än-

derungen ganz oben. Über den Befehl git stash list lassen sich

alle Änderungen des Zwischenspeichers ausgeben:

$ git stash list

stash@{0}: WIP on master: f141859 Merge branch

'feature-xyz'

stash@{1}: WIP on master: c149030 Added something else

stash@{2}: WIP on master: f401859 Added something

stash@{3}: WIP on master: d231880 Added logger

stash@{4}: WIP on master: f241408 Added toString()

method

Über git stash apply können die dem Stash zuletzt hinzuge-

fügten Änderungen wieder auf den Arbeitsbereich ange-

wandt werden. Das Gleiche erreicht man auch über den Be-

fehl git stash pop, wobei hier die jeweiligen Änderungen

auch direkt vom Stash entfernt werden.

Workflows
Wie erwähnt eröffnet Git aufgrund seiner dezentralen Struk-

tur ganz neue Herangehensweisen beziehungsweise ganz

neue Workflows bezüglich der Arbeit im Team.

Der einfachste Workflow ist der sogenannte zentralisierte

Workflow. Er entspricht quasi dem Gedanken von zentralen

Versionsverwaltungssystemen am ehesten: Hierbei gibt es,

wie auch beispielsweise bei Subversion, einen zentralen Ser-

ver mit dem Hauptrepository, das die einzelnen Entwickler im

Team auf ihren jeweiligen Rechner klonen und somit jeweils

ihr eigenes lokales Repository erzeugen.

In diesem lokalen Repository nehmen sie dann wie oben

beschrieben Änderungen vor und übertragen diese nach und

nach (über git push) in das Hauptrepository. In der Regel

braucht man für diesen zentralisierten und zugleich recht ein-

fachen Workflow abgesehen von dem Master-Branch keinen

weiteren Branch.

Als Ausbaustufe des zentralisierten Workflows fungiert der

sogenannte Feature-Branch-Workflow. Dabei werden einzel-

ne Features in separaten Branches entwickelt und bei Fertig-

stellung des jeweiligen Features wieder in den Master-Branch

übertragen.

Pull Requests stellen Anfragen zur Integration von Code dar

(Bild 12)

Stash: Über den Stash lassen sich Änderungen am Arbeitsbereich

zwischenspeichern (Bild 11)

▶

22 1.2016  www.webundmobile.de

VersionsverwaltungFeature

Möchte man fertiggestellte Features zunächst im Team be-

sprechen, bietet sich außerdem die Verwendung sogenann-

ter Pull Requests an. Dabei handelt es sich um Mitteilungen

eines Entwicklers an die anderen Entwickler im Team, dass

er ein bestimmtes Feature fertiggestellt hat und nun quasi da-

rum bittet, die damit verbundenen Änderungen in das zen

trale Repository zu übertragen. Andere Entwickler im Team

haben durch den Pull Request die Möglichkeit, die Änderun-

gen zu begutachten oder zu kommentieren (Bild 12).

Prinzipiell sind Pull Requests unabhängig von dem Fea-

ture-Branch-Workflow und können beispielsweise auch bei

anderen – im Folgenden besprochenen – Workflows verwen-

det werden. Beim zentralisierten Workflow dagegen können

Pull Requests nicht verwendet wer-

den, da hier die Voraussetzung da-

für – sprich zwei verschiedene Re-

positories – nicht gegeben ist.

Wie der zentralisierte Workflow

ist auch der Feature-Branch-Work-

flow noch relativ einfach gehalten.

Deutlich komplexer wird es dage-

gen mit dem sogenannten Gitflow-

Workflow (http://nvie.com/posts/

a-successful-git-branching-model),

der vor allem dann sinnvoll ist, wenn

in regelmäßigen Abständen Relea-

ses einer Software ausgeliefert wer-

den sollen (Bild 13).

Die grundlegenden Abläufe wie

das Arbeiten im lokalen Repository,

Pull Requests und so fort bleiben mehr oder weniger unver-

ändert. Das Einzige, was anders ist, ist die Struktur der Bran-

ches innerhalb eines Repositorys. Statt eines einzelnen Mas-

ter-Branchs verwendet der Gitflow-Workflow zwei Branches,

um die Historie der Entwicklung abzubilden: zum einen den

Master-Branch, welcher die offiziellen Releases enthält, zum

anderen einen Entwicklungsbranch (in der Regel dev oder

develop benannt), auf dem der aktuelle Entwicklungsstand

enthalten ist.

Neue Features werden in neuen Branches entwickelt,

allerdings nach Fertigstellung nicht direkt in den Master-

Branch übertragen, sondern in den Entwickungsbranch. Da-

rüber hinaus sieht der Gitflow-Workflow noch Release Bran-

Workflow-Variante: Der Forking-Workflow (Bild 14)

Workflow-Variante: Der Gitflow-Workflow (Bild 13)

23www.webundmobile.de  1.2016

Versionsverwaltung Feature

seits die Änderungen an eine als Chefentwickler bestimmte

Person (den Dictator) weiterleiten. Nur dieser übernimmt die

Änderungen dann in das offizielle Repository. Durch diesen

mehrstufigen Prozess soll die Qualität des Codes sicherge-

stellt werden.

Git Hooks
Ein Feature, das unter anderem auch für die Codequalität in-

teressant ist, sind sogenannte Git Hooks. Dabei handelt es

sich um Skripts, die ausgeführt werden, wenn ein bestimm-

tes Ereignis (wie beispielsweise das Übertragen von Daten in

das lokale Repository oder das Übertragen von Daten in das

Remote Repository) auftritt. Mit Hilfe solcher Skripts ist es

möglich, verschiedenste Aspekte eines Workflows zu auto-

matisieren oder zu optimieren.

Beispielsweise können Git Hooks dazu verwendet werden,

vor jedem Commit die Unit-Tests für das entsprechende Pro-

jekt auszuführen und sicherzustellen, dass alle Tests erfolg-

reich abschließen. Für den Fall, dass ein Test fehlschlägt,

könnte das Skript dann eine entsprechende Warnung ausge-

ben und verhindern, dass der Commit ausgeführt wird (so

lange, bis die Tests wieder erfolgreich abschließen).

Git Hooks können in verschiedenen Programmiersprachen

geschrieben werden, darunter Perl, Ruby oder Python. Auch

für Node.js existieren verschiedene Module, die Git Hooks

beispielsweise in Build-Tools wie Grunt oder Gulp integrie-

ren. Prinzipiell ist man bei der Wahl der Programmiersprache

relativ frei. Wichtig ist nur, dass sich das jeweilige Skript auf

dem entsprechenden System ausführen lässt.

Git Hooks werden standardmäßig in dem Verzeichnis

hooks unterhalb des .git-Verzeichnisses verwaltet. Dort sind

nach Initialisierung eines Git-Repositorys bereits schon eini-

ge Beispielskripts enthalten. Um sie zu aktivieren, reicht es,

das sample aus dem Dateinamen zu entfernen.

ches vor, um gezielt an einzelnen Versionen einer Software

arbeiten zu können, sowie Hotfix-Branches, um gezieltes

Bugfixing zu betreiben.

Ein Workflow, der sich von den oben beschriebenen Work-

flows grundlegend unterscheidet, ist der Forking-Workflow

beziehungsweise Integration-Manager-Workflow (Bild 14).

Statt eines zentralen serverseitigen Repositorys wie bei den

anderen Workflows hat im Forking-Workflow jeder Entwick-

ler ein eigenes serverseitiges Repository (Remote Repository).

Eines dieser Repositories ist dabei das offizielle Repository,

die anderen Repositories sind sogenannte Forks, also Kopien

beziehungsweise Ableger von dem offiziellen Repository.

Möchte nun ein Entwickler Änderungen, die er bereits in sein

eigenes Remote Repository übertragen hat, auch in das offi-

zielle Repository übertragen, muss er dazu einen Pull Request

an den entsprechenden Entwickler des offiziellen Reposito-

rys (den Integration Manager) stellen.

Bei der Arbeit mit vielen auf GitHub verfügbaren Open-

Source-Bibliotheken ist der Forking-Workflow gang und gä-

be (die Bibliothek jQuery beispielsweise hat momentan 9260

Forks). Möchte man eine Bibliothek nach seinen Wünschen

anpassen oder ein neues Feature hinzufügen, erstellt man zu-

nächst einen Fork der entsprechenden Bibliothek und arbei-

tet damit. Ist das Feature fertig, stellt man einen Pull Request

an den Entwickler der Bibliothek.

Bei sehr komplexen Projekten, bei denen unterschiedliche

Entwickler für bestimmte Teile eines Projekts beziehungs-

weise Subsysteme eines Projekts verantwortlich sind, kann

das gerade beschriebene Konzept noch erweitert werden:

Der sogenannte Dictator-and-Lieutenants-Workflow (Bild 15)

sieht einen hierarchischen Aufbau vor, bei dem die für Sub-

systeme verantwortlichen Entwickler als Zwischenstufen

(beziehungsweise als Lieutenants) fungieren, die den jewei-

ligen Code der Entwickler zunächst prüfen, bevor sie ihrer-

Workflow-Variante: Der Dictator-and-Lieutenants-Workflow (Bild 15)

▶

24 1.2016  www.webundmobile.de

VersionsverwaltungFeature

post-receive-Hook wird nach dem Bearbeiten eines Push Re-

quests ausgelöst.

Fazit
Hat man sich als Entwickler zu Zeiten von CVS und Subver-

sion eher weniger mit dem Thema Versionskontrolle ausei

nandergesetzt, verlangt die Arbeit mit Git dem Entwickler

viel mehr ab. Git unterscheidet sich dabei in vielerlei Hinsicht

von anderen VCS. Zum einen handelt es sich bei Git um ein

dezentrales VCS, zum anderen wird pro Commit ein komplet-

ter Snapshot aller Dateien im Repository erzeugt. Darüber hi-

naus ist man bei der Zusammenstellung einzelner Commits

dank des sogenannten Staging-Bereichs viel flexibler als bei

anderen VCS. Über die Verwendung von Workflows lässt sich

das Arbeiten im Team zudem weiter optimieren.

Neben den in diesem Artikel beschriebenen Workflows ist

man dank der verschiedenen Konzepte, die Git zugrunde lie-

gen, wie Branching, Forking und den dezentralen Reposito-

ries, relativ frei in der Definition eigener Workflows.� ◾

Prinzipiell unterscheidet man zwischen clientseitigen und

serverseitigen Hooks. Erstere werden beispielsweise im Rah-

men von Commits oder im Rahmen vom Merging ausgeführt,

Letztere beispielsweise beim Empfangen von Commits

(sprich, wenn durch git push ein Commit an ein Remote Re-

pository übertragen wurde). Eine Übersicht über die zur Ver-

fügung stehenden Git Hooks zeigt Tabelle 3.

Der Hook pre-commit wird beispielsweise aufgerufen, be-

vor man eine Commit-Nachricht eingibt. Über diesen Hook

hat man Gelegenheit, die Änderungen zu begutachten, die

committet werden sollen, beispielsweise um wie erwähnt

Unit-Tests auszuführen. Der Hook commit-msg wird ausge-

löst, nachdem eine Commit-Nachricht eingegeben wurde.

Dies kann hilfreich sein, um zu überprüfen, ob die Commit-

Nachricht in einem bestimmten Format verfasst wurde, bei-

spielsweise um sicherzustellen, dass sich aus den Commit-

Nachrichten ein Change-Log generieren lässt (https://github.

com/ajoslin/conventional-changelog).

Darüber hinaus stehen an clientseitigen Git Hooks noch

weitere zur Verfügung: beispielsweise post-merge, welches

ausgelöst wird, nachdem die Änderungen eines Branchs in

einen anderen Branch übernommen wurden, oder post-

checkout, nachdem von einem Branch in einen anderen

Branch gewechselt wurde.

Bezüglich der serverseitigen Git Hooks stehen dagegen le-

diglich drei zur Verfügung: pre-receive und update werden

ausgelöst, bevor mit dem Bearbeiten eines Push Requests be-

gonnen wird. Der Unterschied: Der update-Hook wird für je-

den Branch ausgelöst, der von Änderungen betroffen ist, der

pre-receive-Hook dagegen nur einmal pro Push Request. Der

Philip Ackermann
arbeitet beim Fraunhofer-Institut für Ange-

wandte Informationstechnologie FIT an Tools

zum teilautomatisierten Testen von Web

Compliance und ist Autor zweier Fachbücher

über Java und JavaScript.

Tabelle 3: Die verschiedenen Git Hooks

Git Hook Wird ausgelöst Typ

pre-commit Vor dem Durchführen eines Commits Clientseitig

prepare-commit-msg Vor dem Verfassen einer Commit Message Clientseitig

commit-msg Nach dem Verfassen einer Commit Message Clientseitig

post-commit Nach dem Durchführen eines Commits Clientseitig

applypatch-msg Nach dem Verfassen einer Nachricht für einen Patch Clientseitig

pre-applypatch Vor dem Anwenden eines Patchs Clientseitig

post-applypatch Nach dem Anwenden eines Patchs Clientseitig

pre-rebase Vor dem Durchführen eines Rebase Clientseitig

post-rewrite Nach dem Ersetzen eines Commits, beispielsweise durch git commit --amend oder git rebase Clientseitig

post-checkout Nach dem Wechseln eines Branchs (beziehungsweise nach dem Ausführen von git checkout) Clientseitig

post-merge Nach dem Merging Clientseitig

pre-push Vor dem Übertragen von Daten an das Remote Repository Clientseitig

pre-auto-gc Vor dem Ausführen der Garbage Collection Clientseitig

pre-receive Vor dem Empfangen eines Push Requests Serverseitig

update Ähnlich wie pre-receive, nur dass es für jeden Branch aufgerufen wird, der von Änderungen
betroffen ist

Serverseitig

post-receive Nach dem Empfangen und Bearbeiten eines Push Requests Serverseitig

Jetzt kostenlos testen!

Das Fachmagazin für .NET-Entwickler
Testen Sie jetzt 2 kostenlose Ausgaben und erhalten Sie
unseren exklusiven Newsletter gratis dazu.

www.dotnetpro.de/probeabo

2 x
gratis!

26 1.2016  www.webundmobile.de

PräprozessorenHTML /CSS / Javascript

CSS ist im Grunde einfach: Elemente auswählen und Re-

geln anwenden. Dass CSS in der Praxis aber nicht so ein-

fach ist, liegt an der schieren Masse an Regeln, die die Style-

sheets gängiger Projekte brauchen. Ein paar Tausend Zeilen

sind da keine Ausnahme, wobei viele Angaben mehr oder

weniger stark variierte Wiederholungen sind – und das macht

Wartungs- und Änderungsarbeiten aufwendig.

Das andere Problem sind die Browser: Zwar haben wir

nicht mehr die massiven Browserunterschiede samt all den

notwendigen Browserhacks wie zu Zeiten der Browserkrie-

ge; dafür werden aber mit CSS3 unglaublich viele neue Re-

geln und Eigenschaften eingeführt, die von den einzelnen

Browsern unterschiedlich unterstützt werden.

Erschwerend kommt hinzu, dass CSS keine Programmier-

sprache ist und deswegen nicht die Features bietet, die jede

Feld-Wald-und-Wiesen-Programmiersprache mit sich bringt,

etwa Variablen, Schleifen oder Konditionen. Letzteres ändert

sich jedoch durch die in CSS3 vorgesehenen Variablen, Me-

dia Queries (die ja auch so etwas sind wie Bedingungen) oder

@supports zur Abfrage der Unterstützung.

Kein Wunder, dass es Präprozessoren gibt, die da nachbes-

sern und bei der Erstellung von Stylesheets helfen. Am be-

kanntesten sind wohl Sass, LESS und Stylus. Auch wenn sich

die Tools im Detail unterscheiden, ist ihre grundlegende Ar-

beitsweise doch gleich; im Folgenden konzentrieren wir uns

beispielhaft auf Sass. Wenn Sie einen CSS-Präprozessor ver-

wenden, schreiben Sie keinen normalen CSS-Code, sondern

CSS-Code mit Sass-Direktiven. Das ist ähnlich wie die Tem-

Das neue Tool PostCSS will die etablierten Präprozessoren ablösen.

Statt Sass und LESS
Schneller CSS erzeugen mit PostCSS

plate-Systeme, die man beispielsweise auch verwendet, um

über PHP Inhalte in HTML-Seiten zu injizieren. Dieser Code

wird dann kompiliert und daraus das Stylesheet erzeugt. Im

Optimalfall ist der Sass-Code wesentlich übersichtlicher und

kürzer als das generierte Stylesheet und damit schneller zu

erstellen und besser zu warten. Kein Wunder, dass CSS-Prä-

prozessoren so beliebt sind.

Allerdings hat dieser Ansatz auch Nachteile:
�� �Komplexe Mixins in Sass zu schreiben erfordert Einarbei-

tungszeit. Das dadurch gewonnene Wissen können Sie

außerhalb der Sass-Welt nicht weiterverwenden.
�� �Sass ist ein großer, monolithischer Block: Wenn Sie Sass ein-

setzen, haben Sie die gesamten Möglichkeiten von Sass. Es

gibt jedoch keinen vorgegebenen Weg, um bestimmte Fea-

tures nicht zu erlauben, also beispielsweise @extend nicht

zu erlauben. Modularität erhalten Sie nur durch Mixin-Bi-

bliotheken wie Compass.
�� �Wenn ein gewünschtes Feature erst in der nächsten Version

verfügbar ist, kann man nur abwarten.
�� �Die Erzeugung von browserspezifischem Code – zum Bei-

spiel die Ergänzung von Eigen-

schaften mit herstellerspezifi-

schen Präfixen – ist nicht sehr

elegant.

Heute sind wesentlich seltener

herstellerspezifische Präfixe wie

-webkit-, -moz- und -ms- notwen-

dig als noch vor ein paar Jahren.

Das liegt daran, dass Browserher-

steller neue Eigenschaften übli-

cherweise nicht mehr zuerst mit

einem Präfix testweise implemen-

tieren, sondern hinter einem Flag,

das interessierte Webentwickler

aktivieren können.

Trotzdem existieren noch Fälle,

in denen Sie herstellerspezifische

Präfixe brauchen. Zudem gibt es

Situationen, in denen Sie unter-Autoprefixer verwendet das Datenmaterial von Can I use (Bild 2)

Autoprefixer ist eines der bekanntesten PostCSS-Plug-ins (Bild 1)

27www.webundmobile.de  1.2016

Präprozessoren HTML /CSS / Javascript

schiedliche Eigenschaften für verschiedene Browser

benötigen – beispielsweise bei Flexbox. In der Sass-

Welt können Sie für die Präfixerzeugung Compass

nutzen. Compass sieht dafür eigene Mixins vor.

Wenn Sie bei Transformationen die richtigen Präfixe

ergänzen lassen wollen, so schreiben Sie:

.beispiel {

 @include transform(translateX(2em));

}

Inzwischen ergänzt Compass nicht einfach nur wahl-

los alle möglichen Präfixe, sondern zieht zur Ermitt-

lung dessen, was notwendig ist, die Angaben von

Can i use heran. Sie können konfigurieren, welche

Browserversionen Sie berücksichtigen möchten.

Speziell zur Erzeugung browserspezifischen

Codes ist in letzter Zeit Autoprefixer (Bild 1) attraktiv

geworden. Autoprefixer greift ebenfalls auf die Daten von

Can i use (Bild 2) zurück und erzeugt die benötigten Präfixe

der von Ihnen gewählten Browser. Statt dafür aber Präprozes-

sor-spezifischen Code, das heißt, den Aufruf eines Mixins,

schreiben zu müssen, verwenden Sie direkt den Standard-

CSS-Code – um den Rest kümmert sich Autoprefixer automa-

tisch:

.beispiel {

 transform: translateX(2em);

}

Das erzeugte Stylesheet sieht – sofern dieselben Browser bei

der Konfiguration ausgewählt wurden – bei der Verwendung

von Compass oder Autoprefixer identisch aus – ergänzt wer-

den die Präfixe für ältere WebKit-Browser und für den Inter-

net Explorer 9:

.beispiel {

 -webkit-transform: translateX(2em);

 -ms-transform: translateX(2em);

 transform: translateX(4em);

}

Autoprefixer ist das Tool, das PostCSS popu-

lär gemacht hat. Sehen wir uns jetzt einmal

das Grundprinzip von PostCSS an.

Grundprinzip von PostCSS
Die Gemeinsamkeit von CSS-Präprozesso-

ren und PostCSS (Bild 3) ist das Ziel, effekti-

ver und schneller CSS-Code zu schreiben. In

der Vorgehensweise unterscheiden sich die beiden jedoch.

PostCSS selbst ist eigentlich nur ein Parser, ein API für node

trees, ein SourceMap-Generator und ein Stringifier. Kurz ge-

sagt stellt PostCSS alles für die Bearbeitung und Modifizie-

rung von Stylesheets zur Verfügung. Die eigentliche Bearbei-

tung findet aber nicht in PostCSS selbst statt, sondern über

die PostCSS-Plug-ins. Wenn Sie PostCSS ohne Plug-in laufen

lassen, gibt es keinen Unterschied zwischen Input- und Out-

put-Stylesheet. Damit verfolgt PostCSS einen modularen An-

satz: Sie entscheiden, welche Modifikationen Sie durchfüh-

ren möchten, und binden die entsprechenden Plug-ins ein.

Es gibt PostCSS-Plug-ins für die unterschiedlichsten Zwe-

cke. Neben dem erwähnten Autoprefixer zur Ergänzung der

Browserpräfixe und der von einzelnen Browsern benötigten

Sonderangaben wäre da beispielsweise cssnext, mit dem Sie

CSS-Features der nächsten Generation heute schon nutzen

können, auch wenn sie noch nicht in den Browsern angekom-

men sind.

Variablen oder Mixins
Aber auch die andere Richtung kann sinnvoll sein: Falls Sie

einmal CSS-Angaben für Uralt-IEs benötigen, so kümmert

sich das PostCSS-Plug-in cssgrace darum. Außerdem gibt es

noch Plug-ins für Features, die Sie von Sass kennen, wie Va-

riablen oder Mixins, und Sie finden Plug-ins,

um den Code zu optimieren oder um Sie bei

bestimmten Angaben zu warnen.

Dem monolithischen Block eines CSS-Prä-

prozessors mit vordefinierten Features steht

also bei Post-CSS ein Plug-in-System gegen-

über. So können Sie je nach Projekt unter-

schiedliche Plug-ins nutzen. Falls eine ge-

wünschte Modifikation nicht vorhanden sein

sollte, können Sie auch Ihr eigenes Plug-in

schreiben. Dafür müssen Sie keine eigene

Sprache lernen, sondern Sie setzen Java

Script ein. Dass die Hürde zur Erstellung von

Plug-ins so gering ist, begünstigt neue Plug-

ins – so wird die Auswahl immer größer.

Die prinzipielle Herangehensweise bei CSS-Präprozesso-

ren und PostCSS unterscheidet sich noch in einem weiteren

Punkt: Während Sass und Co. Templates sind – Styles und

Logik sind in einer Datei kombiniert –, ist der Input bei Post

CSS meist reines CSS, die Logik steckt in den Plug-ins. Ein

weiterer Vorteil ist schließlich, dass PostCSS wesentlich

schneller ist als Sass oder LESS (Bild 4).

Das Logo von PostCSS (Bild 3)

▶

Vergleich der Performance von Präprozessoren und PostCSS (Bild 4)

28 1.2016  www.webundmobile.de

PräprozessorenHTML /CSS / Javascript

PostCSS können Sie mit allen klassischen Build-Tools ver-

wenden – natürlich mit Grunt oder Gulp (Bild 5), aber auch mit

webpack, Broccoli, Brunch, ENB, Fly, Stylus, Duo und Con-

nect/Express. Außerdem gibt es noch postcss-js, das Sie in

React Inline Styles, Free Style oder Radium nutzen können,

und es existiert ein Kommandozeilen-Tool. Sehen wir uns am

Beispiel von Gulp an, wie die Arbeit mit PostCSS funktioniert.

PostCSS mit Gulp
Für Gulp benötigen Sie Node.js, das Sie vorher herunterla-

den müssen. Ein Aufruf von node –v zeigt, ob es geklappt hat

und welche Version installiert ist. Als Nächstes installieren

Sie Gulp:

npm install gulp -g

Zu Überprüfung, ob alles geklappt hat, dient wiederum:

gulp –v

Wechseln Sie dann in das Verzeichnis Ihres Projekts mit:

cd pfadzumprojekt

Dort installieren Sie Gulp lokal über:

npm install gulp --save-dev

Und schließlich müssen Sie noch PostCSS installieren:

npm install --save-dev gulp-postcss

Um besser testen zu können, ob alles geklappt hat, sollten Sie

zusätzlich ein Plug-in installieren, beispielsweise Autoprefi-

xer:

npm install --save-dev autoprefixer

Jetzt fehlt noch das gulpfile.js für die Konfiguration, das sich

im Projektverzeichnis befinden muss. In diesem legen wir Va-

riablen für die Komponenten an:

var postcss = require('gulp-postcss');

var gulp = require('gulp');

var autoprefixer = require('autoprefixer');

Danach definieren wir einen Task mit dem Namen css, in dem

wir Autoprefixer als Prozessor angeben und konfigurieren: Es

sollen die letzten drei Browserversionen berücksichtigt wer-

den und alle Browser mit mehr als einem Prozent Nutzer:

gulp.task('css', function () {

 var processors = [

 autoprefixer({browsers: ['last 3 versions', '> 1%']})

];

 return gulp.src('./src/*.css')

 .pipe(postcss(processors))

 .pipe(gulp.dest('./dest'));

});

Zusätzlich ist angegeben, dass sich die Dateien, die verarbei-

tet werden sollen, im Verzeichnis src des aktuellen Projekt-

ordners befinden und die Endung css haben. Das Ergebnis

soll in einem Ordner dest gespeichert werden, der bei Bedarf

automatisch angelegt wird.

Führen wir einen Test durch. Im Ordner src befindet sich

die Datei style.css mit folgendem Inhalt:

.a {

 display: flex;

 background: linear-gradient(red, green);

}

Starten wir den Task durch die Eingabe des Befehls:

gulp css

Danach finden wir im Ordner dest die neue Datei style.css.

Wie zu erwarten, wurden die browserspezifischen Angaben

bei Flexbox und für den Farbverlauf ergänzt:

.a {

 display: -webkit-box;

 display: -webkit-flex;

 display: -ms-flexbox;

 display: flex;

 background: -webkit-linear-gradient(red, green);

 background: linear-gradient(red, green);

}

Was etwas irritierend ist: Tools wie Autoprefixer gibt es in ver-

schiedenen Varianten, auch als eigenständiges Gulp-Plug-in,

das dann den Namen gulp-autoprefixer hat. Aber das funk

tioniert dann standalone, während wir es hier ja innerhalb

von PostCSS einsetzen wollen.

Mehrere Plug-ins nutzen
Im Normalfall werden Sie mehrere Plug-ins nutzen. Im Bei-

spiel soll zusätzlich zu Autoprefixer cssnext zum Einsatz kom-

men. Zuerst müssen Sie das Plug-in installieren:

PostCSS funktioniert mit Gulp, aber auch mit anderen Build-Tools

wie Grunt (Bild 5)

29www.webundmobile.de  1.2016

Präprozessoren HTML /CSS / Javascript

npm install --save-dev postcss-cssnext

Dann geht es an die Anpassung der Datei gulpfile.js. Dort de-

finieren wir eine zusätzliche Variable cssnext für das zusätz-

liche Plug-in.

var postcss = require('gulp-postcss');

var gulp = require('gulp');

var autoprefixer = require('autoprefixer');

var cssnext = require('postcss-cssnext');

Außerdem führen wir cssnext() bei den Prozessoren auf:

gulp.task('css', function () {

 var processors = [

 autoprefixer({browsers: ['last 3 versions',

 '> 1%']}), cssnext()

];

 return gulp.src('./src/*.css')

 .pipe(postcss(processors))

 .pipe(gulp.dest('./dest'));

});

Jetzt können wir in unserem Stylesheet auch selbstdefinierte

Variablen einsetzen – im Beispiel definieren wir eine Variab-

le --heading, die alle Überschriften h1 – h6 auswählt. Für die-

se legen wir einen oberen Abstand von 0 fest.

@custom-selector :--heading h1, h2, h3, h4, h5, h6;

:--heading { margin-top: 0 }

Dank cssnext werden diese Angaben in Code übersetzt, den

die heutigen Browser verstehen:

h1, h2, h3, h4, h5, h6 { margin-top: 0 }

Sehen wir uns die Konfigurationsmöglichkeiten des belieb-

testen PostCSS-Plug-ins – Autoprefixer – im Folgenden ein-

mal genauer an.

Autoprefixer im Detail
Welche Browser berücksichtigt werden sollen, können Sie

auf verschiedene Arten angeben. In den Beispielen bisher

wurden zwei Varianten eingesetzt:
�� �Variante 1: last X versions bedeutet, dass nur die X letzten

Versionen berücksichtigt werden.
�� �Variante 2: > Y% bestimmt, dass nur der Code für Browser,

die mehr als Y% Nutzer haben, geschrieben werden soll.

Zusätzlich können Sie einzelne Browser mit Versionen ange-

ben wie Firefox >=20 für Firefox ab Version 20; ie 6-8 wählt

entsprechend den Internet Explorer 6, 7 und 8 aus. Sie kön-

nen dabei folgenden Browsernamen – bei manchen gibt es

auch Abkürzungen – einsetzen: Android, BlackBerry (bb),

Chrome, Firefox (ff), Explorer (ie), Edge, iOS (ios_saf), Ope-

ra, Safari, OperaMobile (op_mob), OperaMini (op_mini),

ChromeAndroid (and_chr), FirefoxAndroid (and_ff) oder Ex-

plorerMobile (ie_mob).

Autoprefixer verwendet dabei Browserlist zur Angabe,

welche Browser berücksichtigt werden sollen. Angaben nach

Version und Nutzung können Sie bei Bedarf auch kombinie-

ren; dabei werden die einzelnen Angaben jeweils in Anfüh-

rungszeichen angegeben und durch ein Komma getrennt:

'last 3 versions', '> 5%'.

Veraltete Angaben entfernen
Autoprefixer ergänzt übrigens nicht nur zusätzliche Eigen-

schaften mit Präfixen, sondern entfernt darüber hinaus veral-

tete Angaben wie -moz-border-radius ebenso wie gänzlich

sinnlose Einträge wie -ms-border-radius (da der Internet Ex-

plorer die Eigenschaft border-radius direkt implementiert

hat, gab es nie einen Browser, der die Angabe -ms-border-ra-

dius interpretiert hat).

Falls Sie in einem speziellen Fall die Entfernung alter Prä-

fixe nicht wünschen, so können Sie bei der Konfiguration von

Autoprefixer remove: false angeben:

var processors = [

 autoprefixer({browsers: ['last 3 versions', '> 1%'],

 remove: false})

];

Weitere Optionen sind add: false, sofern keine Präfixe er-

gänzt werden sollen, und cascade, über das Sie steuern kön-

nen, ob bei einem nicht minimierten Stylesheet zugehörige

Selektoren eingerückt werden sollen (Standard: true).

Back to the future
Das CSS Color Module Level 4 des W3C (Bild 6) sieht ein ver-

bessertes Handling bei Farbangaben vor. Zuerst einmal wer-

den Lücken gefüllt. Warum kann man eigentlich bei einer

hexadezimalen Farbangabe keine Transparenz festlegen?

hexa macht genau das möglich und verhält sich zu einer

Mit cssnext können Sie heute schon die neuen Farbangaben aus

dem CSS Color Module Level 4 nutzen (Bild 6)

▶

30 1.2016  www.webundmobile.de

PräprozessorenHTML /CSS / Javascript

klassischen Hexadezimal-Angabe wie rgba() zu rgb(). Bei

hexa geben Sie eine weitere zweistellige Hexadezimalzahl

am Ende an, die den Grad der Transparenz festlegt. #ff000080

definiert zum Beispiel ein halb transparentes Rot.

Einleuchtend ist auch die neue Funktion gray(), mit der Sie

einen Grauton festlegen können, ohne dass Sie einen Farb-

wert angeben müssen, der ja an sich bei Grautönen sinnlos

ist. Nützlich ist ebenfalls die color()-Funktion für Farbanpas-

sungen.

W3C-Spezifikationen
Aber die nächsten Levels der W3C-Spezifikationen haben

noch mehr zu bieten – so beispielsweise selbst definierte Se-

lektoren. Die Browserunterstützung dieser neuen Features ist

jedoch mager bis gar nicht vorhanden. Trotzdem können Sie

diese Angaben dank cssnext heute schon schreiben. cssnext

verwandelt diese neue Syntax in Angaben, die von den heu-

tigen Browsern verstanden werden.

Setzen wir die neuen Farbangaben einmal ein: Zuerst ver-

wenden wir hexa für den Hintergrund, die color()-Funktion

für den Rahmen (im Beispiel wird zu Rot eine weitere Farbe

addiert) und schließlich legen wir über gray() den Grauton

fest – der erste Parameter bei gray() bestimmt die Helligkeit,

der zweite die Transparenz:

.b {

 background-color: #11234566;

 border: 1px solid color(red rgb(+ #004400));

 color: gray(10%, 60%);

}

Nach der Bearbeitung durch cssnext wurden im Ergebnis-

Stylesheet aus den neuen Farbangaben rgba()-Angaben er-

zeugt, zusätzlich sind Fallback-Farben ohne Alphakanal für

ältere Browser ergänzt:

.b {

 background-color: #112345;

 background-color: rgba(17, 35, 69, 0.4);

 border: 1px solid rgb(255, 0, 0);

 color: #1A1A1A;

 color: rgba(26, 26, 26, 0.6);

}

Schön ist auch die Unterstützung für CSS3-

Filter von cssnext, dabei wird der SVG-Code

für ältere Firefox-Browser erzeugt.

Mehr zur Browserunterstützung
Während cssnext in die Zukunft gerichtet ist,

kümmert sich das Gegenstück cssgrace um

die Vergangenheit (Bild 7) – es generiert, wo

möglich, den für ältere Browser benötigten

Code, also beispielsweise für Internet Explo-

rer 6, 7 oder 8.

Das ist für bestimmte Länder wie China re-

levant, weil dort der Anteil dieser älteren IEs

wesentlich höher ist. cssgrace erzeugt dann

Hacks wie die proprietären Microsoft-Filter-Angaben auto-

matisch. Aus:

.foo {

 opacity: .6;

}

… wird etwa:

.foo {

 opacity: .6;

 filter: alpha(opacity=60);

}

Ein weiteres Tool zum Umgang mit Browserunterschieden ist

doiuse. Es setzt wie Autoprefixer auf die Daten von Can I use.

Allerdings ergänzt doiuse keinerlei Code, sondern gibt Ihnen

Informationen über Features aus, die von bestimmten Brow-

sern nicht unterstützt werden. Die Browser, die dabei berück-

sichtigt werden sollen, können Sie gesondert angeben.

Mehr Plug-ins
Auch wenn Sie auf PostCSS setzen, müssen Sie Ihre Sass-Ge-

wohnheiten nicht über Bord werfen. Wenn Sie sich an Mixins

gewöhnt haben, können Sie sie auch mit PostCSS weiternut-

zen – dafür gibt es das Plug-in postcss-mixins, während

postcss-nested es erlaubt, Regeln in Sass-Manier zu ver-

schachteln, und postcss-simple-vars Variablen einführt, wie

sie von Sass bekannt sind.

Eine Alternative dazu ist precss, das gleich mehrere Sass-

Features auf einmal bietet. Allerdings sollten Sie bei Plug-ins,

die eine andere Syntax erlauben, als in normalem CSS üblich

ist, diese explizit in Ihrem Basis-Stylesheet ergänzen. Dafür

können Sie auf postcss-use zurückgreifen und die Plug-ins

über @use zu Beginn des Stylesheets definieren.

Ein neuer Trend sind Quantity-Queries. Diese bieten die

Möglichkeit, unterschiedliche Formatierungen bereitzustel-

len, je nachdem, wie viele Elemente es in einem Kontext gibt.

So könnte man beispielsweise bei vier Elementen die Breite

auf 25 Prozent setzen wollen, bei drei Elementen auf 33 Pro-

zent et cetera. Wie viele Elemente es aber sind, weiß man

nicht im Voraus – eine nicht untypische Situation beim Ein-

satz von Content-Management-Systemen. Diese quantitati-

Cssgrace kümmert sich um alte IEs, die gerade in China noch wichtig sind – die

Erklärungen gibt es aber auch auf Englisch (Bild 7)

31www.webundmobile.de  1.2016

Präprozessoren HTML /CSS / Javascript

blindheit zu simulieren; cssbyebye entfernt ausgewählte Re-

geln, focus ergänzt zu jedem :hover-Selektor auch den :focus.

Diese kleine Auswahl soll die Vielfältigkeit der Plug-ins de-

monstrieren – ein Blick in den Plug-in-Katalog mit dem ge-

samten Verzeichnis lohnt sich. Und falls Sie dort nicht das Ge-

wünschte finden, können Sie eigene Plug-ins in JavaScript

schreiben. Das Schöne daran ist, dass einfache Plug-ins auch

nur ein paar Zeilen Code beinhalten.

PostCSS und Präprozessoren
Es ist natürlich eine Vereinfachung zu behaupten, dass

PostCSS die CSS-Präprozessoren ersetzt; das Verhältnis von

PostCSS zu CSS-Präprozessoren ist vielfältiger. Zum einen

können Sie selbstverständlich CSS-Präprozessoren und

PostCSS gleichzeitig nutzen: Sinnvoll wäre es beispielswei-

se, den Code in Sass zu schreiben, zu kompilieren und diese

CSS-Datei als Input für PostCSS zu nutzen, um weitere Ope-

rationen nach Bedarf durchführen zu lassen – beispielsweise

an dieser Stelle Autoprefixer zu nutzen.

Zum anderen können Sie Sass-Komponenten, an die Sie

sich gewöhnt haben, auch über die erwähnten PostCSS-Plug-

ins nutzen wie precss. Allerdings dürfen Sie dabei nicht er-

warten, dass eine hundertprozentige Übereinstimmung be-

steht, und Sie sollten nicht ohne detaillierte Tests bei einem

Sass-Projekt rein auf PostCSS umsteigen.

Fazit
Modulare Herangehensweise, eine Fülle von Plug-ins und

performant – das sind wichtige Merkmale von PostCSS. Ein

weiterer Vorteil ist, dass populäre Plug-ins auch die Weiter-

entwicklung von CSS an sich beeinflussen können – so wie

wir es bei jQuery und JavaScript sehen.

Natürlich hat PostCSS auch Nachteile: Wenn Sie einen

neuen Entwickler ins Team holen und sagen, dass Sie Sass

benutzen, ist die Sache (halbwegs) klar. Bei PostCSS müssen

Sie hingegen angeben, welche Plug-ins Sie nutzen. Denn je

nach benutzten Plug-ins wird der geschriebene CSS-Code

ganz unterschiedlich aussehen.

Wichtig ist außerdem – wie meistens –, dass Sie wissen, was

Sie tun. Durch die Verwendung von cssnext könnte man bei-

spielsweise leicht aus dem Blick verlieren, dass der geschrie-

bene Code heute noch nicht in den Browsern funktioniert.

Ähnlich könnte es auch mit Autoprefixer sein. Wer sich ange-

wöhnt, .beispiel { column-count: 3 } zu schreiben, vergisst

vielleicht, dass er bei einem CSS-pur-Projekt noch die ande-

ren Angaben ergänzen muss.� ◾

ven Abfragen können Sie durch fortgeschrittene, aber recht

komplexe Selektoren umsetzen. Dank postcss-quantity-que-

ries müssen Sie sich nun um die Umsetzung nicht mehr küm-

mern. Wenn etwa eine Formatierung nur gelten soll, wenn es

vier bis sechs Elemente sind, schreiben Sie:

ul > li:between(4, 6) {

 color: rebeccapurple;

}

postcss-quantity-queries erzeugt Ihnen dann die dafür benö-

tigten komplexen Selektoren:

ul > li:nth-last-child(n+4):nth-last-child(-n+6):

first-child,

ul > li:nth-last-child(n+4):nth-last-child(-n+6):

first-child ~ li {

 color: rebeccapurple;

}

Aber natürlich gibt es noch viele weitere interessante Plug-

ins, wie zum Beispiel stylelint, das den CSS-Code verbessert,

epub, das das epub-Präfix für E-Books ergänzt, will-change,

das den notwendigen 3D-Hack vor dieser neuen Eigenschaft

hinzufügt, pixrem für Fallback-Angaben in Pixeln, vertical-

rhythm für einen vertikalen Rhythmus, colorblind, das die

Farben manipuliert, um verschiedene Formen von Farben-

�� �Compass
http://compass-style.org

�� �PostCSS
https://github.com/postcss/postcss

�� �Node.js
https://nodejs.org/en

�� �Browserlist
https://github.com/ai/browserslist

�� �Color-Module Level 4
https://drafts.csswg.org/css-color

�� �Katalog von PostCSS-Plug-ins
http://postcss.parts

�� �Im Artikel erwähnte PostCSS-Plug-ins
https://github.com/postcss/autoprefixer
https://github.com/cssdream/cssgrace
https://github.com/anandthakker/doiuse
https://github.com/postcss/postcss-mixins
https://github.com/postcss/postcss-nested
https://github.com/postcss/postcss-simple-vars
https://github.com/jonathantneal/precss
https://github.com/postcss/postcss-use
https://github.com/pascalduez/postcss-quantity-queries

Links zum Thema

Dr. Florence Maurice
ist Autorin, Trainerin und Programmiererin in

München. Ihr aktuelles Buch ist dem Thema

»CSS3« gewidmet und bei dpunkt erschienen

(ISBN 978-3-86490-118-8). Außerdem bloggt

sie regelmäßig zu CSS und verwandten Themen

unter: http://maurice-web.de/blog

32 1.2016  www.webundmobile.de

Angular 2.0HTML /CSS / Javascript

Der vorangegangene Artikel »Angular 2.0 und modularer

Code« erläuterte, wie mit SystemJS Bibliotheken und

eigene Client-Side-Skripts geladen und ausgeführt werden

können. Ein erstes Hello-World-Beispiel mit Angular 2.0 wur-

de entwickelt. Das heißt, dass die Ausführung von ECMA

Script-6-Modulen nun keine Hürde mehr ist. Es wird Zeit, tie-

fer in das Framework einzutauchen.

Dieser Artikel stellt die neue Template-Syntax von Angu-

lar 2.0 vor. Es halten zahlreiche, neue Möglichkeiten Einzug,

um Oberflächenelemente zu beschreiben. Die Entwickler

von Angular verfolgen hierbei ein großes Ziel: das Konzept

der Template-Syntax eindeutiger und nachvollziehbarer zu

formulieren, als es bei der Vorgängerversion der Fall ist. Auch

der Support durch Editoren, etwa durch bessere automati-

sche Vervollständigung, soll nun verbessert werden und die

Produktivität des Entwicklers steigern.

Zur näheren Erläuterung wird ein Prototyp genutzt, der als

Dashboard für Schäden an Autos dienen soll (Bild 1).

Neben einer ID und dem Schadensstatus kann auch der ak-

tuelle Füllstand des Fahrzeugs abgefragt werden. Des Weite-

ren kann mit einem Klick ein Steinschlag (rockfall) gemeldet

werden.

Übrigens Sie finden das hier vorgestellte Beispiel auf Git-

Hub unter http://bit.ly/web_und_mobile_angular2_artikel2

und auf www.webundmobile.de.

Components und Views
Angular-2-Anwendungen bestehen aus verschiedenen Kom-

ponenten (Components), die miteinander agieren können.

Für das Dashboard wird eine Komponente benötigt. Im Dash-

board wird eine Liste von Autos abgebildet werden. Hierfür

wird eine weitere Komponente implementiert. Den Aufbau

einer Angular-2.0-Komponente zeigt Listing 1.

Von Angular werden zunächst zwei Module @Component()

und @View() importiert. Diese beiden Module sind im Spezi-

ellen TypeScript-Dekoratoren. Dekoratoren ermöglichen es,

Klassen durch Meta-Angaben erweitern. @Component() spe-

zifiziert, dass die Dashboard-Komponente über den Selector

<dashboard> im DOM des HTML-Dokuments eingesetzt

wird. Mit @View() definiert man das Template, das mit der

Komponenten verknüpft ist. In diesem Beispiel wird das Feld

id aus der Klasse DashboardComponent im Template gebun-

den und angezeigt. An dieser Stelle wird deutlich, was eine

Komponente ist: Komponenten sind die neuen zentralen Bau-

steine von Angular 2.0. Sie übernehmen die Rolle von Direk-

tiven und Controllern aus AngularJS.

Das Templating mit AngularJS war bereits ein mächtiges Werkzeug. Mit Angular 2.0

legen die Entwickler nun kräftig nach.

Template-Syntax
Web frontend Development mit Angular 2.0

Eine Komponente ist ein angereichertes Template, das im

Browser zur Anzeige gebracht wird. Das Template wiederum

verfügt über ein spezifisches Verhalten, das in Angular 2.0

durch TypeScript-Dekoratoren beschrieben wird.

Interpolation
Wie wird nun aus dem Ausdruck {{ id }} ein angezeigter Text

im Browser?

Bereits in AngularJS 1.x konnten Daten mit Hilfe zweier

geschweifter Klammern an ein HTML-Template gebunden

werden. Der Wert wurde dann mittels Interpolation ausge-

wertet und angezeigt. Dieses Konzept bleibt in Angular 2.0

erhalten:

<p>{{ id }}</p>

import { Component, View } from 'angular2/angular2';

@Component({ selector: 'dashboard' })

@View({

 template: `<p>{{ id }}</p>`

})

export default class DashboardComponent {

 id: string = 'NG-Car 2015';

}

Listing 1: Aufbau eine Komponente in Angular 2.0

Dashboard-Prototyp: Dashboard für die Eingabe von Schäden an

Autos (Bild 1)

33www.webundmobile.de  1.2016

Angular 2.0 HTML /CSS / Javascript

Die Schreibweise ist im Übrigen eine Vereinfachung der tat-

sächlichen Syntax. Denn bevor dieses Template im Browser

ausgegeben wird, setzt Angular den Ausdruck in ein Proper-

ty-Binding um:

<p [text-content]="interpolate(['Gregor'], [name])"></p>

Um in dem Dashboard nun ein Auto abbilden zu können, wird

eine weitere Komponente benötigt (Listing 2).

Im ersten Schritt soll diese Komponente lediglich die zuge-

wiesene Identifikationsnummer ausgeben. Der @Input()-De-

korator bietet die Möglichkeit, Werte an die CarComponent

zu übergeben. Nun kann die CarComponent im Dashboard

referenziert und im Template verwendet werden (Listing 3).

Im Wesentlichen wurden drei Anpassungen vorgenom-

men:
�� �Über ein weiteres import-Statement wird CarComponent

geladen.
�� �@View() wird durch die Eigenschaft directives ergänzt, da-

mit CarComponent im Template verwendet werden kann.
�� �Das Feld id wird an die gleichnamige Eigenschaft der Car-

Component gebunden. Hierbei handelt es sich um ein Pro-

perty-Binding.

So wurde über die Datenbindung die erste Interaktion zwi-

schen zwei Komponenten realisiert.

Input- und Output-Properties sind Eigenschaften, die das

API einer Angular-Komponente beschreiben. Über Inputs

werden Informationen an eine Komponente übergeben. Mit

Outputs kommuniziert die Komponente Änderungen nach

außen. Inputs werden durch Property-Bindings beschrieben.

Outputs können über Event-Bindings abonniert werden. Mit

Properties werden einer Komponente Daten übermittelt

(Bild 2). Property-Bindings zeichnen sich durch eckige Klam-

mern aus ([id]):

<car [id]="id"></car>

Anstatt eckiger Klammern können Property-Bindings auch

mit der vollständigen Syntax bind-{property-name}="{express

ion}" beschrieben werden:

<car bind-id="id"></car>

Events bieten die Möglichkeit, auf Veränderungen einer

Komponente zu reagieren. Anders gesagt bieten sie einer

Komponente also die Möglichkeit, mit ihrer Außenwelt zu

kommunizieren (Bild 3).

Event-Bindings zeichnen sich durch runde Klammern aus.

Sie triggern die Ausführung eines Statements:

<car (damaged)="report(damage)"></car>

Auch für diese Syntax existiert eine längere Syntax in der

Form on-{event-name}="{statement}":

<car on-damaged="report(damage)"></car>

Um ein solches Event aus einer Komponente heraus zu erzeu-

gen, wird der Dekorator @Output() verwendet. Die dazuge-

hörige Property ist ein Event-Emitter, der Ereignisse auslösen

kann (Listing 4).

Neben der Verwendung runder Klammern können Event-

Bindings auch mit dem Ausdruck on-{Event-Name}="{call

back()}" deklariert werden:

<car on-damaged="report(damage)"></car> ▶

import { Component, View, Input } from

'angular2/angular2';

@Component({ selector: 'car' })

@View({

 template: `<p>{{ id }}</p>`

})

export default class CarComponent {

 @Input() id: string;

}

Listing 2: CarComponent

import { Component, View } from 'angular2/angular2';

import { CarComponent } from '../car/car.component';

@Component({ selector: 'dashboard' })

@View({

 directives: [CarComponent],

 template: `<car [id]="id"></car>`

})

export default class DashboardComponent {

 id: string = 'NG-Car 2015';

}

Listing 3: dashboard.component.ts

Daten an eine Komponente übergeben (Property-Binding) (Bild 2)

DamageDashboard

CarComponent CarComponent

[model]="id" [model]="id"

34 1.2016  www.webundmobile.de

Angular 2.0HTML /CSS / Javascript

In der Dashboard-Komponente muss lediglich eine Methode

ergänzt werden, die nach dem Auslesen des Events (dama-

ged) ausgeführt wird (Listing 5). In diesem Fall wird im Dash-

board die Anzahl der gemeldeten Schadensfälle zusammen-

gezählt (Bild 4).

Two-way-Bindings
Um die Direktive [(ng-model)] zu verwenden, muss vorher

das Modul { FORM_DIRECTIVES } importiert werden.

Aus Sicht einer Komponente werden mit Property-Bindings

schreibende und den Event-Bindings lesende Operationen

spezifiziert. Wie in AngularJS 1.x ist es auch möglich, Zwei-

Wege-Bindungen (Two-way-Bindings) zu realisieren. In der

Template-Syntax von Angular 2.0 werden hierfür die Schreib-

weisen beider Binding-Arten kombiniert:

<input [(id)]="id">

Die eckigen Klammern legen fest, dass ein gegebener Wert

an das <input>-Element gebunden wird. Die runden Klam-

mern machen deutlich, dass Änderungen der Eigenschaft

überwacht werden und diese mit Hilfe der Direktive ng-

model in die Eigenschaft zurückschreiben werden.

Wie in den vorangehenden Beispielen gibt es auch hier

eine alternative Schreibweise:

<input bindon-ng-model="id">

Die Zwei-Wege-Bindung lässt sich auch ohne ng-model rea-

lisieren. Das Markup wird so allerdings etwas komplexer:

<input

 [value]="id"

 (input)="id=$event.target.value">

Hierbei gibt $event Zugriff auf das auslösende Ereignis. Es ist

ein natives JavaScript-Event. Daher kann dessen API ver-

wendete werden, um auf das betroffene Element zuzugreifen

und dessen Wert auszulesen (id=$event.target.value).

Innerhalb eines Templates können Referenzen auf HTML-

Elemente, Komponenten und Datenbindungen erzeugt wer-

den, um mit ihnen zu arbeiten.

<input #id type="text"/>

{{ id.value }}

Das Binding {{ id.value }} macht deutlich, dass die lokale Re-

ferenz das HTML-Element referenziert und nicht nur dessen

Wert. Anstatt der # können lokale Referenzen auch mit dem

Prefix var- deklariert werden:

<input var-id type="text"/>

{{ id }}

Lokale Referenzen auf Komponenten unterscheiden sich in

syntaktischer Hinsicht nicht von den HTML-Elementen. Zu-

sätzlich können die Methoden der Komponente zur Interak-

tion genutzt werden:

<car #car></car>

<button (click)="car.getTankCapacity()">

Get tank capacity</button>

Lokale Referenzen können auch auf Objekte zeigen. Im fol-

genden Beispiel wird der Platzhalter #c genutzt, um für jedes

Element der Liste cars die Komponente Car zu rendern:

<car *ng-for="#c in cars" [model]="c">

Zustandsänderungen innerhalb einer Komponente publizieren

(Bild 3)

DamageDashboard

CarComponent CarComponent

(damaged)="notifyCarDamaged()" (damaged)="notifyCarDamaged()"

import { EventEmitter } from 'angular2/angular2';

@Component({ /* ... */ })

class CarComponent() {

 @Input() id:string;

 @Output() damaged:EventEmitter =

 new EventEmitter();

 reportDamage() {

 // Event auslösen

 this.damaged.next(this.id);

 }

}

Listing 4: car.component.ts

export default class DashboardComponent {

 /* ... */

 notifyCarDamaged() {

 this.totalDamages++;

 }

}

Listing 5: Auf Ereignisse einer Komponente reagieren

35www.webundmobile.de  1.2016

Angular 2.0 HTML /CSS / Javascript

Wert null oder undefined ist. Auf

diese Weise können Fehlermeldun-

gen bei der Template-Erzeugung

vermieden werden:

<p>{{ car?.driver }}</p>

Hier wird geprüft, ob das Objekt car

existiert. Wenn ja, wird der Namen

des Fahrers ausgegeben. Der ?-Ope-

rator funktioniert ebenfalls in kom-

plexeren Objektbäumen:

<p>{{ car?.driver?.licences?.B1 }}</p>

Auch wenn sich die Syntax zu Beginn ungewohnt ist, handelt

es sich hierbei um valides HTML. In der HTML-Spezifikati-

on des W3C heißt es: »Attribute names must consist of one or

more characters other than the space characters, U+0000

NULL, """, "'", ">", "/", "=", the control characters, and any

characters that are not defined by Unicode.«

Polymer-Webkomponenten nutzen
In AngularJS 1.x ist Entwicklungsaufwand nötig, um Web-

komponenten anderen Bibliotheken integrieren zu können.

Es müssen Direktiven geschrieben werden, um Angular die

Statusänderungen der Fremdkomponenten mitzuteilen.

Mit Angular 2.0 ist diese Arbeit nicht mehr nötig. Es wird

nicht mehr unterschieden, ob es sich um ein natives Browser

element oder eine Web Component handelt. Angular hat nur

Kenntnis davon, dass es an bestimmten Stellen im DOM Ele-

mente instanzieren muss und es Eigenschaften schreiben so-

wie Event Listener erzeigen soll. Das ermöglicht beispiels-

weise die direkte Verwendung der Komponente google-you-

tube aus dem Polymer-Projekt:

<google-youtube

 #player

Bei dem Stern (*) vor der ng-for-Di-

rektive handelt es sich übrigens um

eine Kurzschreibweise.

Direktiven wie ng-for, ng-if und

ng-switch werden zusammen mit ei-

nem Stern * verwendet. Diese Di-

rektiven werden strukturelle Direk-

tiven (Structural Directives) ge-

nannt, da sie DOM-Elemente hinzu-

fügen oder entfernen:

<div *ng-if="totalDamages >

0">{{ totalDamages }}</div>

In diesem Beispiel wird die Anzahl aller gemeldeten Schäden

nur dann im Dashboard angezeigt, wenn deren Anzahl grö-

ßer 0 ist.

Bei dem * handelt es sich um eine Kurzschreibweise, die

das Schreiben des Templates vereinfachen soll. Sie wird als

Micro-Syntax bezeichnet, da Angular 2.0 diesen Ausdruck

interpretiert und wieder in die bekannten Bindings umsetzt.

Beispielsweise ist auch folgende Verwendung der ng-if-Di-

rektive zulässig:

<template [ng-if]="totalDamages > 0">

 <div>{{ totalDamages }}</div>

</template>

Angular übersetzt die Micro-Syntax in ein Property-Binding

und umschließt das Template mit einem <template>-Tag. Da-

durch entfällt der * vor dem ng-if (Tabelle 1).

Der Pipe-Operator
Pipes korrespondieren zu filters aus AngularJS 1.x und wer-

den genutzt, um Daten zu für die Anzeige zu transformieren.

Sie nehmen Eingabeargumente entgegen und liefern das

transformierte Ergebnis zurück.

In einem Binding-Ausdruck werden sie durch das Symbol

| (genannt Pipe) eingeleitet:

/* Der Wert von name wird in

Großbuchstaben ausgegeben */

<p>{{ id | uppercase}}</p>

Pipes können auch aneinanderge-

hängt werden, um mehrere Trans-

formationen durchzuführen:

<p>{{ id | uppercase |

lowercase}}</p>

Die Bezeichnung Elvis-Operator ist

eine Ode an den Mythos, der sich

damit befasst, ob Elvis tatsächlich tot

ist oder nicht.

Der ? -Operator ist ein nützliches

Instrument, um zu prüfen, ob ein

Anzeige der Anzahl aller erfassten Schäden (Bild 4)

▶

Tabelle 1: Übersicht der Binding-Typen in Angular 2.0

Binding-Typ Anwendung Beispiel

Property Element Event
Component Event
Directive Event

<car [id]="model.id"></car>

Event Element Event
Component Event
Directive Event

<car (damaged)="notifyCarDamaged()"></car>
<button (click)="save()"></button>

Two-way Directive-Event-Property <input [(ng-model)]="car.driver">

Attribute Attribut <input [disabled]="model == null">
<button [attr.aria-label] = "actionName">

Class Class-Property <tr [class.success]="model?.hasDamage
== false">

Sytle Style-Property <span [style.color]="car.HasDamage :
’red’ ? ’black’">

36 1.2016  www.webundmobile.de

Angular 2.0HTML /CSS / Javascript

 [video-id]="videoId">

</google-youtube>

<button (click)="player.play()"></button>

<button (click)="player.pause()"></button>

@View({ /* … */})

export default class DashboardComponent {

 /* ... */

Johannes Hoppe
ist selbstständiger IT-Berater, Software

entwickler und Trainer. Er arbeitet derzeit als

Architekt für ein Portal auf Basis von .NET

und AngularJS.
http://blog.johanneshoppe.de

Gregor Woiwode
ist als Software-Entwickler im Bereich des

Competitive Intelligence bzw. Enterprise

Knowledge Managements für ein Software

unternehmen in Leipzig tätig. Er veranstaltet

Trainings AngularJS.
www.woiwode.info/blog

�� �Angular 2.0 - 5 Min Quickstart
https://angular.io/docs/ts/latest/quickstart.html

�� �Angular 2.0 Template Syntax
http://victorsavkin.com/post/119943127151/
angular-2-template-syntax

�� �ng-conf 2015 Keynote 2
https://www.youtube.com/watch?v=-dMBcqwvYA0

�� �Felipe Coury, Nate Murray, Carlos Taborda
ng-book 2 - The Complete Book on AngularJS 2
https://www.ng-book.com/2/

�� �angular.io - Template-Syntax
https://angular.io/docs/ts/latest/guide/template-syntax.
html

�� �Template-Syntax demystified
http://blog.thoughtram.io/angular/2015/08/11/
angular-2-template-syntax-demystified-part-1.html

�� �Angular 2 Data Flow – Jeff Cross, Rob Wormald and
Alex Rickabaugh
https://youtu.be/bVI5gGTEQ_U

�� �W3C - HTML: The Markup Language (an HTML language
reference)
http://www.w3.org/TR/html-markup/syntax.html

Links zum Thema

 videoId: string;

 constructor() {

 /* ... */

 this.videoId = "ewxEFdMPMF0";

 }

Alle im Artikel beschriebenen Konzepte können hier nahtlos

verwendet werden. Anhand der Online-Dokumentation von

google-youtube ist bekannt, welche Eigenschaften und Ak

tionen zur Verfügung stehen. Das Element-Attribut video-id

kann über ein Property-Binding gesetzt werden ([video-id]).

Wird der Komponente eine gültige ID eines Videos von You-

Tube übergeben, initialisiert sich der Video-Player selbststän-

dig und kann verwendet werden.

Unter Verwendung der Referenz #player können die Aktio

nen der Webkomponente von anderen Webelementen ge-

steuert werden. Angular stellt über die Template-Syntax ein

einheitliches API zur Verfügung, das auf jeder Web Compo-

nent angewendet werden kann.

Fazit
Angular 2.0 bricht die Template-Syntax in mehrere Konzep-

te auf. Der Datenfluss zwischen Komponenten wird dadurch

konkret definiert. Daher ist es mit einem Blick auf ein Temp-

late möglich, zu erkennen, wie sich eine Komponente verhält.

Somit können im Unterschied zur Vorgängerversion Templa

tes in Angular 2.0 diffiziler und genauer beschrieben werden.

Allerdings sind auch mehrere Möglichkeiten vorhanden,

Templates und Bindings zu definieren. Daher ist es ratsam,

sich im Team auf jeweils eine der angebotenen Schreibwei-

sen zu einigen, um ein vertrautes und homogenes Bild im

Markup zu schaffen.

Im nächsten Artikel in der Ausgabe 2/2016 der web & mo-
bile developer werden die Themen Dependency Injection und

Unit-Testing mit Angular 2.0 behandelt. Denn wie in Angu-

larJS 1.x können bei dessen ambitioniertem Nachfolger Kom-

ponenten und Dienste über Angulars integrierten IoC-Con-

tainer miteinander kombiniert werden und dennoch für sich

isoliert getestet werden.� ◾

Die wichtigsten Fakten zur Template-Syntax auf einem
Blick:

�� �Input- und Output-Properties beschreiben das API einer

Komponente.
�� �Über Inputs fließen Daten in die Komponente hinein.
�� �Inputs werden über Property-Bindings aktualisiert ([proper-

ty]).
�� �Über Outputs fließen Daten aus der Komponente heraus.
�� �Outputs werden mit Hilfe von Event-Bindings abonniert

(event).
�� �Ein Property-Binding und Event-Binding können kombiniert

werden, um ein Two-way-Binding zu beschreiben (twoWay).

Zusammenfassung

BEST!
TEST THE
BEST!

 * 1&1 Cloud Server 1 Monat kostenlos. Danach ab 4,99 €/Monat. Keine Einrichtungsgebühr. Keine Mindestvertragslaufzeit. Preise inkl. MwSt. Intel®und das Intel® Logo sind
eingetragene Marken der Intel Corporation in den USA und anderen Ländern. 1&1 Internet SE, Elgendorfer Straße 57, 56410 Montabaur. 1und1.info

DE: 02602 / 96 91
AT: 0800 / 100 668

Internet
made in
Germany

TEST
30 TAGE
AUSPROBIEREN1 KLICK

UP- ODER DOWN-
GRADEN1 ANRUF

EXPERTEN-
RAT1

DOMAINS | E-MAIL | HOSTING | SHOPS | SERVER

1 Monat kostenlos!
Danach ab 4,99 €/Monat.*

Easy to use –
ready to cloud.
Die 1&1 Cloud Server sind unschlagbar in
ihrer Performance bei CPU, RAM und SSD!
Realisieren Sie Ihre Cloud-Projekte mit
der perfekten Kombination aus
Flexibilität und leistungs-
starken Features.

1&1 CLOUD SERVER

 Load Balancing
 SSD Storage
 Minutengenaue

 Abrechnung
 Intel® Xeon® Prozessor

 E5-2660 v2 und E5-2683 v3

T O P - P E R F O R M E R

MAPDE1512W1P_210x297_46L.indd 1 05.11.15 14:56

38 1.2016  www.webundmobile.de

Webseiten testenHTML /CSS / Javascript

Webseiten haben sich im Lauf der Zeit von einfachen

Textdokumenten mit Bildern und einem simplen Lay­

out zu komplexen Webapplikationen entwickelt, die indi­

viduell auf die Interaktion des Benutzers reagieren. Heutzu­

tage sind viele Webseiten sogenannte Single Page Applica­

tions wie zum Beispiel Google Documents oder der Spotify

Web Player.

Solche komplexen Applikationen sind entsprechend fragil

und benötigen einen hohen Testaufwand, um sicherzustellen,

dass die Applikation in allen unterstützten Browsern und auf

allen Endgeräten auch so funktioniert, wie es die Entwickler

beabsichtigt haben.

In der klassischen Programmierung sind Tests gang und

gäbe. Durch die zunehmende Professionalisierung im Be­

reich Frontend- und User-Interface Development und die

immer komplexeren Abläufe und Features innerhalb moder­

ner Webapplikationen steigt dementsprechend auch das In­

teresse und Bedürfnis, Tests durchzuführen.

Der Browser als solches ist keine Plattform, die fest definiert

ist. Es handelt sich vielmehr um eine Plattform, die viele Un­

bekannte aufweist. Einerseits haben wir hochmoderne Brow­

ser wie Google Chrome oder Firefox, die Rapid-Release-Zyk­

len bieten, um stets auf dem neuesten Stand zu sein, und ent­

sprechend neue Features in monatlicher Taktung zur Verfü­

gung stellen.

Auf der anderen Seite werden auf PCs oftmals aber auch

noch veraltete Browser verwendet, denen existenzielle Funk­

tionen fehlen oder, die ein ganz anderes Verhalten an den Tag

legen wie moderne Browser. Um diesem Problem Herr zu

werden, gibt es zwei Wege.

Komplexe Webseiten und Single Page Applications benötigen einen hohen Testaufwand.

Komplexe Applikationen
Automatisiertes Testen von Webseiten

Progressive Enhancement
Einerseits kann man fehlende Funktionen über sogenannte

Polyfills nachrüsten. Dies geschieht üblicherweise über Java­

Script-Bibliotheken, die die Funktionen nachbilden.

Eine wesentlich elegantere Herangehensweise, die zum

Beispiel von Jeremy Keith vertreten wird, ist das sogenannte

Progressive Enhancement.

Man identifiziert dabei die Kernfunktionalität der Webappli­

kation beziehungsweise der Komponente und setzt dann die

simpelste Technologie ein, um das gewünschte Feature um­

zusetzen. Später baut man dieses Feature mit modernen

Technologien entsprechend aus. So wird sichergestellt, dass

einerseits veraltete Browser weiterhin die Webapplikation

nutzen können, Benutzern mit modernen Browsern aber ein

Mehrwert geboten wird. Leider machen diese

beiden Ansätze die Webapplikation nicht sta­

biler, sondern im Gegenteil wird so in den ver­

schiedenen Browsern häufig ein abweichen­

des Verhalten verursacht (Bild 1).

Manuellen Testaufwand verringern
Durch diese Vielzahl an Kombinationen und

unterschiedlichen Feature-Sets pro Browser

wird der manuelle Testaufwand so groß, dass

es kaum noch möglich ist, bei tiefgreifenden

Änderungen einen kompletten Test der ge­

samten Webapplikation durchzuführen. An

dieser Stelle kommen automatisierte Tests

zum Tragen. Doch welche Art von Tests eignet

sich für den Anwendungsfall eine Webseite

oder, genauer gesagt, um das User Interface

zu testen?

Varianten: Die verschiedenen Arten von Tests für Webapplika­

tionen (Bild 1)

Ablaufdiagramm von Sikuli Script (Bild 2)

www.webundmobile.de  1.2016

In der klassischen Programmierung setzt man oft auf Unit-

Tests. Unit-Tests sind bestens geeignet, um Teilbereiche ei­

ner Webapplikation zu testen. So ist es möglich, sehr granu­

lare Tests zu erstellen, die sicherstellen, dass die existenziel­

le Business-Logik und die entsprechend definierten Work­

flows funktionieren.

Ein weiterer Pluspunkt von Unit-Tests ist, dass diese eine

gewisse Sicherheit bei Änderungen geben. So kann bei tief­

greifenden Änderungen oder größeren Umbauarbeiten si­

chergestellt werden, dass alles weiterhin so funktioniert wie

erwartet. Es besteht kein Zweifel darin, dass Unit-Tests die

Qualität von unzähligen Software-Projekten verbessern.

Aber machen Unit-Tests andere Tests überflüssig? Nein, kei­

nesfalls. Man braucht mehr als nur Unit-Tests, um eine pro­

fessionelle Softwarequalität zu erreichen.

Üblicherweise schreiben Entwickler ihre eigenen Unit-

Tests selbst, was aber zu Problemen führen kann. Resultie­

rend daraus, dass Entwickler die Tests mit der gleichen Denk­

weise schreiben wie den Code, werden Probleme, die dem

Entwickler selbst nicht auffallen, auch nicht vom Test abge­

deckt. Um einen Unit-Test zu schreiben, empfiehlt es sich da­

her, die Tests ebenfalls einem Code-Review zu unterziehen,

sodass ein unvoreingenommener Entwickler den Unit-Test

aus einer anderen Perspektive begutachtet und entspre­

chend andere Probleme sehen kann.

Benutzer verbringen ihre gesamte Zeit ausschließlich mit

der Interaktion mit dem User Interface der Webapplikation.

Unit-Tests sind aber Backend-Tests, die zum Beispiel prüfen,

ob eine Kalkulation richtig ist. Sie können nicht sicherstellen,

ob das Resultat dieser Kalkulation auch korrekt dargestellt

wird. Des Weiteren können zum Beispiel Probleme wie feh­

lerhafte Icons, falsch platzierte Call-to-Action-Buttons, ver­

schobene Feld-Labels oder abgeschnittene Texte nicht er­

kannt werden – hierfür benötigt man User-Interface-Tests.

User-Interface-Tests - welche Möglichkeiten
gibt es?
Es gibt verschiedenste Ansätze, wie man UI-Tests schreiben

kann, und entsprechend viele Tools. Eines der wohl bekann­

testen ist Selenium. Selenium ermöglicht es, Browser zu au­

tomatisieren. So kann man Workflows abbilden und prüfen,

ob diese nach einer Refaktorierung weiterhin funktionieren.

Selenium arbeitet auf Basis sogenannter XPaths.

XPaths repräsentieren einen eindeutigen Pfad innerhalb

einer DOM-Struktur, um Elemente zu selektieren. Auf Basis

der selektierten Elemente können dann Assoziationen durch­

geführt werden. Zum Beispiel um zu prüfen, ob das Label des

Feldes korrekt ist. Selenium benötigt zum Ausführen der

Tests jeweils einen sogenannten Testrunner, der den Browser

öffnet und die Steuerbefehle durchführt.

Alternativ ist es möglich, die Tests in einem Headless-

Browser wie zum Beispiel PhantomJS durchzuführen. So ist

es möglich, die Tests nicht nur auf seinen eigenen Rechnern,

sondern auch auf einem Continous-Integration-Server durch­

zuführen. So kann man beispielsweise bei jedem Commit in

der Versionskontrolle einen Test-Run auslösen und somit si­

cherstellen, dass der Commit keine Probleme verursacht. ▶

WWebinare

www.developer-media.de/webinare
Weitere Informationen und Anmeldung unter

Komprimiertes
Know-how für Entwickler

Codequalität mit JavaScript
Referent: Golo Roden
On-demand, 90 Minuten

Microsoft TFS 2015 -
Neuerungen
Referent: David Tielke
On-demand, 60 Minuten

Architektur auf der
Serviette - Softwarezellen
Referent: Ralf Westphal
On-demand, 60 Minuten

MS SQL Server 2016 –
Neues für Entwickler
Referent: Thorsten Kansy
On-demand, 60 Minuten

SOLID Prinzipien
Referent: David Tielke
On-demand, 60 Minuten

jQuery – Teil 1
Referent: Johannes Hoppe
On-demand, 60 Minuten

Softwarequalität
für Einsteiger
Referent: David Tielke
On-demand, 60 Minuten

40 1.2016  www.webundmobile.de

Webseiten testenHTML /CSS / Javascript

Stephan Pohl
ist Teamleiter Web-Development bei der

Shopware AG und Spezialist auf den Gebieten

JavaScript, CSS und HTML. Er fungiert als

Schnittstelle zwischen den Abteilungen Design

und Entwicklung.
https://de.shopware.com

*** Settings ***

Library CalculatorLibrary

*** Test Cases ***

Addition

 Given calculator has been cleared

 When user types "1 + 1"

 and user pushes equals

 Then result is "2"

*** Keywords ***

Calculator has been cleared

 Push button C

User types "${expression}"

 Push buttons ${expression}

User pushes equals

 Push button =

Listing 1: Test

Continous Deployment für Webseiten mit

automatisierter Testdurchführung (Bild 3)

den in einer tabellarischen Daten-Syn­

tax und mit Keyword-basiertem An­

satz erweitert. So kann die Basis-

Funktionalität des Frameworks er­

weitert werden. Nützlich ist dies,

wenn man gewisse Workflows, wie

zum Beispiel einen Benutzer-Login,

der in mehreren Tests zum Einsatz kommt,

automatisieren möchte. Einen typischen Test

zeigt Listing 1.

Das Robot Framework sorgt auch dafür, dass wir unsere

Tests in die beiden Testsuits Storefront und Administration

aufteilen können (Bild 3).

Tests automatisiert ausführen lassen
Nachdem wir uns für SikuliX in Kombination mit dem Robot

Framework entschieden haben und eine Test-Suite mit

knapp 300 Tests aufgebaut hatten, wollten wir natürlich auch

sicherstellen, dass wir jeweils täglich feststellen können, ob

alle Refrakturierungen und Änderungen am Frontend wei­

terhin funktionieren und kein Bruch entstanden ist.

Da die Ausführung der Tests circa 60 Minuten pro Browser

dauern, haben wir uns für einen Nightly Run entschieden,

der jeweils um drei Uhr nachts ausgeführt wird. Die jeweili­

gen Browser haben wir in VMs zur Verfügung gestellt. Das

Robot Framework stellt Reporter in verschiedensten Forma­

ten bereit, sodass einer Integration in Jenkins oder Bamboo

nichts mehr im Wege steht.

Fazit
Tests sind wichtig, um eine professionelle Codequalität zu

liefern und sicherzustellen, dass die Software jederzeit veröf­

fentlich werden kann. Außerdem geben Tests Sicherheit bei

der Entwicklung an bestehendem Code. Doch es reicht nicht,

nur Unit-Tests durchzuführen. Integrationstests wie UI-Tests

sind ebenso Bestandteil wie Regressions-Tests. Im Bereich

Unit-Tests gibt es unzählige Ansätze, Frameworks und Tools

– doch UI-Tests sind aktuell eher noch eine Individual-Lö­

sung. Durch die Verwendung des Robot Frameworks in Kom­

bination mit SikuliX ist es aber möglich, eine universelle Lö­

sung zu finden, die auch dann funktioniert, wenn die DOM-

Struktur dynamisch generiert wird.� ◾

Leider hat Selenium aufgrund der XPaths

aber auch eine Kehrseite. Falls sich ein

Selektor ändert, eine andere Klas­

se auf ein Element gelegt wird

oder ein Element verschoben

wird, dann muss zudem der Test

manuell angepasst werden.

Wir hatten vor allem bei unserer

Administrationsoberfläche mit XPaths

zu arbeiten, da sich die DOM-Struktur

aufgrund des verwendeten JavaScript-

Frameworks Ext.JS stetig geändert hat.

Visuelles Testen von
Webapplikationen
Wir haben uns angesichts dieses Problems auf die Suche

nach einem anderen Tool gemacht, das unabhängig von der

Struktur ist, und sind dabei auf SikuliX gestoßen. SikuliX ver­

folgt den gleichen Ansatzpunkt wie Selenium und automati­

siert Browser.

Doch SikuliX geht noch einen Schritt weiter und kann alles

automatisieren, was auf dem Monitor zu sehen ist. Zur Iden­

tifizierung von Elementen wird hier nicht auf XPaths oder

CSS-Selektoren, sondern auf Screenshots gesetzt. Ja, Sie

haben richtig gelesen. SikuliX verwendet intern OpenCV

(Open Computer Vision), um eine Bild-Erkennung durchzu­

führen (Bild 2).

SikuliX selbst stellt eine Python Library zur Verfügung, um

Workflows und zum Beispiel Klickwege zu skripten. Um aber

mit SikuliX wirkliche Tests zu schreiben, benötigen wir eine

weitere Komponente, das sogenannte Robot Framework.

Hierbei handelt es sich um ein Testautomatisierungs-Frame­

work, um Akzeptanz-Tests zu schreiben. Die Tests selbst wer­

Jetzt kostenlos anmelden:
twitter.com/webundmobile

gplus.to/webundmobile

webundmobile.de

facebook.de/webundmobile

Top-Informationen für Web- und Mobile-Entwickler.
Klicken. Lesen. Mitreden.

Developer
Newsletter

42 1.2016  www.webundmobile.de

JavaScriptHTML /CSS / Javascript

Funktionale Programmierkonzepte halten mehr und mehr

Einzug im Mainstream. Facebooks React übt auch im Um-

feld der Frontend-Entwicklung mit JavaScript einen wach-

senden Einfluss darauf aus. Doch React ist in erster Linie ei-

ne View-Library – es bietet für sich alleine betrachtet kaum

Lösungen zur Verwaltung des Anwendungszustands. Mit

Flux hat Facebook seine Idee dazu publik gemacht. Dan Ab-

ramovs Redux ist eine Variante davon, die sich aus der Masse

an Flux-Implementierungen sehr positiv abhebt.

Die Verwaltung des Anwendungszustand wird bei zuneh-

mend komplexen Anwendungen immer schwieriger. Unter

Anwendungszustand versteht man die Gesamtmenge aller

Daten, die den Zustand der Anwendung zu einem bestimm-

ten Zeitpunkt ausmachen. Dazu gehören die momentan ge-

ladenen oder angezeigten Inhalte, die Auswahl-, Anzeige-,

Ausklappzustände der verschiedensten UI-Elemente und

vieles mehr. Auch der Zustand von Kommunikationsvorgän-

gen und -verbindungen (verbunden oder nicht verbunden,

Anfrage gesendet, Anfrage empfangen) wird häufig benötigt.

Die Verwaltung dieses Anwendungszustands über die

Laufzeit des Programms hinweg kann eine große Herausfor-

derung sein. Oft wird er ohne ein einheitliches Konzept ge-

pflegt und dem Entwickler ist teilweise gar nicht bewusst,

welchen Anwendungszustand sein Programm erzeugt. Seit

es Computerprogramme gibt, hat es unzählige Versuche ge-

geben, um die Verwaltung des Anwendungszustands zu ver-

einfachen.

Probleme mit MVC
Bis heute ist das Model-View-Controller-Konzept eine der am

meisten verbreiteten Ideen, um Separation of Concerns in ei-

ner Anwendungsarchitektur umzusetzen. Man kann es des-

halb auch als einen Versuch ansehen, die Verwaltung des An-

wendungszustands zu vereinfachen, indem klare Zuständig-

keiten ermittelt werden.

Von MVC-Frameworks wie Backbone kennt man bereits

eine eigene Abstraktionsschicht mit sogenannten Model-Ob-

jekten. Der Sinn besteht darin, dass üblicherweise das Obser-

ver-Designmuster angewendet wird: Die View beobachtet

die Model-Objekte und bekommt auf diese Weise Änderun-

gen am Anwendungszustand mit.

Bei komplexen MVC-Anwendungen mit verschachtelten

und hierarchischen Model-Objekt-Bäumen kommt es auch

vor, dass Model-Objekte andere Model-Objekte beobachten

und auf diese Weise mehrstufige Benachrichtigungskaska-

den entstehen können.

Dies kann jedoch zu Problemen führen: Bild 1 zeigt wie mit

zunehmender Komplexität einer MVC-Anwendung schnell

Redux ist eine Bibliothek zur Zustandsverwaltung in JavaScript-Anwendungen.

Unidirektional
Bibliothek Redux

der Überblick über die Beziehungen der einzelnen Kompo-

nenten verloren gehen kann. Besonders kritisch sind dabei

auch immer wieder mehrfache Observer-Beziehungen inner-

halb der Model-Schicht. Oft beginnen Programmierer, den

Anwendungszustand noch um zusätzliche Flags anzurei-

chern, die verhindern sollen, dass abhängig vom Anwen-

dungszustand bestimmte Teilnehmer durch signalisierte Än-

derungen beeinflusst werden. Updates werden mitunter dop-

pelt und dreifach durchgeführt.

Ein weiteres Problem ist, dass die Model-Schicht im Nor-

malfall veränderlichen Zustand enthält, der noch dazu asyn-

chron modifiziert wird. Race Conditions und Fehler aufgrund

von nichtdeterministischem Timing-Verhalten sind damit

schwer nachvollziehbar.

Unidirektionaler Datenfluss
Als Lösung für die mit dem MVC-Modell einhergehenden

Probleme hat Facebooks Entwicklungsabteilung die Anwen-

dungsarchitektur Flux entwickelt (Bild 2). Zuerst nur als all-

gemeine Beschreibung; später folgte eine Referenzimple-

mentierung des Konzepts. Spätestens seitdem gibt es eine

Vielzahl an Implementierungen. Allen gemein ist die Grund-

idee eines unidirektionalen Datenflusses.

Der Zustand der Anwendung wird in sogenannten Stores

gespeichert. Aus diesen wird (oder werden) die View(s) er-

zeugt. Hier zeigt natürlich eine View-Library wie Facebooks

React ihre Stärken, denn React zeichnet sich insbesondere

dadurch aus, dass es die View bei einem geänderten Zustand

sehr effizient neu rendern kann, indem es sein virtuelles

Model-View-Controller-Problematik: Die Komplexität einer

MVC-Anwendung (Bild 1)

43www.webundmobile.de  1.2016

JavaScript HTML /CSS / Javascript

DOM mit dem realen DOM vergleicht und die notwendigen

Änderungsoperationen berechnet.

Jede Änderung des Zustands in den Flux-Stores muss über

sogenannte Actions durchgeführt werden, welche die Art der

Änderung beschreiben. Der View selbst kann Actions auslö-

sen, die wiederum über den Dispatcher an die Stores verteilt

werden. Die Daten fließen in dieser Architektur also stets in

eine Richtung.

Redux ist eine Bibliothek zur Verwaltung von Zustand in

JavaScript-Anwendungen. Der Entwickler Dan Abramov hat

sie im Rahmen der Vorbereitung zu seinem Vortrag »Hot Re-

loading with Time Travel« auf der React Europe Konferenz

geschrieben. Seitdem hat er für diese kleine Bibliothek von

vielen Seiten großes Lob eingeheimst.

Redux gilt im allgemeinen als eine Flux-Variante, obwohl

es auch einzelne Stimmen gibt, die Redux nicht als eine Im-

plementierung von Flux ansehen, weil das Konzept des Dis-

patchers fehlt und es auch lediglich einen einzigen Store gibt.

Der Hauptgrund, warum diese Konzepte fehlen, ist jedoch die

radikale Reduktion auf das absolut Wesentliche.

Redux ist Reduced Flux
Denn Redux reduziert das Flux-Konzept auf drei Bedingun-

gen:

1. �Single Source of Truth: Der vollständige Anwendungszustand

wird in einem einzigen Store als ein einziger Objektbaum

gehalten. Trotz dieser Vereinfachung wird auch bei Redux

nicht alles an einem Ort durcheinandergeworfen. Unter-

schiedliche Aspekte können schließlich auch einfach in un-

terschiedlichen Teilbäumen gegliedert sein. Trotzdem ver-

einfacht der einfache Objektbaum Operationen, die auf

dem gesamten Anwendungszustand zugreifen wollen.

2. �Zustand ist read-only: Der im Store gehaltene Zustand wird

– wie bei Flux üblich – ausschließlich über Actions modifi-

ziert. Auf diese Weise gehören Probleme wie Race Condi-

tions der Vergangenheit an, weil diese Actions stets nach-

einander angewandt werden. Der aktuelle Zustand im Re-

dux-Store wird niemals direkt modifiziert – stattdessen wird

stets ein neuer Zustand erzeugt, der den aktuellen dann er-

setzt.

3. �Veränderung des States heißt Transformation durch Reducer:
Die Berechnungsvorschrift eines neuen Zustands wird mit-

tels der sogenannten Reducer realisiert. Eine Redux-An-

wendung hat einen oder mehrere Reducer. Diese berech-

nen anhand des aktuellen Zustands und einer Action den

neuen Zustand. Da der State stets neu berechnet wird, kann

es nicht passieren, dass die Anwendung ungültige Zwi-

schenzustände einer direkten Manipulation sieht.

Dan Abramov veröffentlichte auf Twitter als Spielerei eine

vollständige Redux-Implementierung in etwa 100 Zeilen

JavaScript – was deutlich macht, wie stark das Konzept redu-

ziert werden konnte.

Funktionale Konzepte
Ein Grund für die Kompaktheit der Bibliothek ist die konse-

quente Anwendung funktionaler Konzepte: Wenn eine Funk-

tion zur Abbildung eines Konzepts ausreicht, dann muss man

dafür kein Objekt mit einer Methodenschnittstelle schaffen.

Für Neulinge funktionaler Programmierung erscheint das oft

zuerst ungewohnt. Tatsächlich ist in der JavaScript-Commu-

nity jedoch spätestens seit dem Erfolg von React ein starker

Trend funktionaler Programmierkonzepte sichtbar. Deshalb

hier die grundlegenden Konzepte:

Die Funktion ist sicherlich das am weitesten bekannte Kon-

strukt. Man definiert sie mit dem function-Schlüsselwort, und

sie kann Parameter empfangen und liefert einen Rückgabe-

wert. Bei funktionaler Programmierung gilt üblicherweise,

dass eine Funktion nur von ihren Parametern abhängt und

immer ein Resultat zurückliefert. Für die gleichen Parameter

sollten stets das gleiche Resultat zurückgegeben werden.

Wenn das nicht so ist, dann würde die Funktion von Seiten-

effekten abhängen und wäre nicht mehr pur. Eine der we-

sentlichen Merkmale funktionaler Programmierung ist die

konsequente Vermeidung von Seiteneffekten. Hier eine ein-

fache Funktion:

function plus (a,b) {

 return a+b;

}

Nahezu trivial ist hier zu erkennen, dass die Funktion ledig-

lich von ihren beiden Parametern a und b abhängt und dass

bei gleichen Werten auch stets dasselbe Ergebnis berechnet

wird. Ebenfalls eine Javascript-Funktion, aber mit Seitenef-

fekt und deshalb nicht funktionaler Programmierung fol-

gend:

let counter = 0;

function count () {

 return counter++;

}

Die Funktion hängt von einer Zustandsvariable in ihrem le-

xikalischen Gültigkeitsbereich ab. Innerhalb der Funktion

wird diese Zustandsvariable bei jedem Aufruf modifiziert

(Seiteneffekt). Die Funktion liefert mit jedem Aufruf ein an-

deres Ergebnis und das, obwohl sie nicht einmal Parameter

besitzt. Streng funktional würde eine Funktion ohne Parame-

ter immer den gleichen Wert liefern.

Man beachte: Damit sind die allermeisten Methoden von

Objekten nicht streng funktional – denn entweder sie hängen

vom internen Zustand ihres Objekts ab, oder sie beeinflus-

Facebooks Flux: Lösung für die mit dem MVC-Modell einher

gehenden Probleme (Bild 2)

▶

44 1.2016  www.webundmobile.de

JavaScriptHTML /CSS / Javascript

sen selbst Objektzustände durch Seiteneffekte. Objektorien-

tierte Programmierung ist inhärent inkompatibel mit den

Konzepten streng funktionaler Programmierung.

Funktionales Programmierkonzept
Ein sehr gängiges funktionales Programmierkonzept sind

Funktionen höherer Ordnung. Das klingt zwar etwas ge-

schwollen, heißt aber einfach nur, dass eine solche Funktion

eine andere Funktion als Parameter erhält. Die bekanntesten

Vertreter in JavaScript sind Array.prototype.map, Array.pro-

totype.filter oder Array.prototype.reduce.

Mit map() kann man eine übergebene Funktion auf jedes

Element eines Arrays anwenden. Das Ergebnis des map()-

Aufrufs ist ein neues Array mit dem jeweiligen Resultat der

übergebenen Funktion:

[1,2,3,4,5].map(x=>x+1)

=> [2,3,4,5,6]

Mit filter() kann man aus den Elemen-

ten eines Arrays jene herausfiltern, für

welche die übergebene (Prädikat-)

Funktion true zurückliefert:

[1,2,3,4,5].filter(x=>(x%2)===0)

=> [2,4]

Reduce ist neben map() und filter() das

wohl bekannteste Konzept funktio

naler Programmiersprachen. Typische

Anwendungsfälle sind die Summe oder

Produkte der Elemente eines Arrays:

[1,2,3,4,5].reduce((a,b)=>a+b, 0);

=> 15

[1,2,3,4,5].reduce((a,b)=>a*b, 1);

=> 120

Aber auch String-Konkatenation kann man damit er-

reichen:

["1", "2", "3", "4", "5"].reduce((a,b)=>a+","+b,

"")

=> "1,2,3,4,5"

Das letzte hier vorgestellte funktionale Konzept ist die

Kombination mehrerer Funktionen in eine. Eines der

gängigsten Beispiele ist compose:

function compose2 (f,g) {

 return (...args) => f(g.apply(args))

}

function compose (...fns) {

 return fns.reduce(compose2);

}

let add1 = x=>x+1;

let double = x=>x*2;

// f(x) = (x*2)+1

f = compose(add1, double)

Das Beispiel zeigt, wie man compose auf einfache Weise im-

plementieren könnte. Die Hilfsfunktion compose2 erhält zwei

Funktionen als Parameter. Die erste Funktion (f) wird mit dem

Ergebnis des Aufrufs der zweiten Funktion aufgerufen. Man

könnte auch sagen, dass f zu einer Wrapper-Funktion wird.

Die Implementierung der Funktion compose wendet nun

diesen kleinen Wrapper-Generator mit reduce() auf eine Lis-

te von Funktionen an. Jede einzelne Funktion wird um ihren

Nachfolger gewickelt, und ganz innen befindet sich der Auf-

ruf der letzten Funktion der Liste.

Funktionsweise von Redux
Bild 3 zeigt, wie Redux funktioniert. Wie bei Flux werden Ac-

tions durch sogenannte Action Creators erzeugt, doch es gibt

keinen eigenen Dispatcher. Stattdessen werden sie im Store

zusammen mit dem aktuellen Zustand

an die Reducer-Funktion des Stores

übergeben. (Die Methode des Stores,

mit dem man eine Action übergibt,

heißt jedoch auch dispatch()). Das Re-

sultat der Reducer-Funktion ist der

neue aktuelle Zustand des Stores. Statt

die Reducer-Funktion also auf ein Ar-

ray von Elementen anzuwenden, wird

bei Redux die Reducer-Funktion auf

die zeitlich nacheinander ankommen-

den Actions angewandt, um kontinu-

ierlich den jeweils aktuellen Zustand

auf den nächsten zu reduzieren.

Da der Zustand niemals direkt mani-

puliert wird, ist es ein Leichtes, vorhe-

rige Zustände wiederherzustellen – es

Time Travel Debugger mit einer Redux-

Implementierung des bekannten Todo-

MVC-Projekts (Bild 4)

Redux: Bei Flux werden Actions durch sogenannte Action Creators

erzeugt (Bild 3)

45www.webundmobile.de  1.2016

JavaScript HTML /CSS / Javascript

gehört nicht mehr dazu, als sich eine Referenz auf den vorhe-

rigen Zustand zu merken. Bild 4 zeigt einen sogenannten

Time Travel Debugger mit einer Redux-Implementierung des

bekannten TodoMVC-Projekts. Durch Ziehen an dem Slider

auf der Unterseite des UI kann man verschiedene Zustände

des UI wiederherstellen.

Installation von Redux
Wie viele Projekte im React-Umfeld ist der gängige Installa-

tionpfad von Redux auch per Node Package Manager (npm).

Alle anderen Möglichkeiten sind dagegen umständlich oder

zumindest nicht empfehlenswert. Man beginnt sein eigenes

Projekt im einfachsten Fall, indem man ein Verzeichnis an-

legt und dieses mit npm initialisiert:

$ mkdir redux-demo

$ cd redux-demo/

$ npm init

...

Für React benötigt man üblicherweise einen Compiler, der

JSX-Code übersetzen kann. Seit einiger Zeit setzt Facebook

dabei auf Babel, was den besonderen Vorteil hat, dass es

gleich noch eine ganze Reihe weiterer Features von ECMA

Script 2015 und teilweise sogar einige der Vorschläge für

ES2016 mitbringt. Die package.json enthält alle für das Bei-

spielprojekt notwendigen Abhängigkeiten (Listing 1).

Nachdem die package.json ins Projektverzeichnis kopiert

wurde, installiert man die Abhängigkeiten durch folgenden

Aufruf:

npm install

Unter den Abhängigkeiten befinden sich die Module für

React und ReactDOM. Weiterhin auch Redux in Form des

npm-Pakets redux. Das Paket react-redux ergänzt Redux um

Werkzeuge zur Anbindung an React. Eine Redux-Erweite-

rung mit dem Namen redux-thunk wird später noch interes-

sant, wenn es um asynchrone Action Creators geht.

Die Entwickler-Abhängigkeiten enthalten den Babel-Com-

piler, webpack und den babel-loader, den webpack benutzt,

um JavaScript-Dateien mit Babel zu übersetzen. Die Konfigu-

ration für webpack zeigt Listing 2.

Die Quellen der Anwendung liegen in einem Unterver-

zeichnis app/. Dort ist die Datei index.js der Einstiegspunkt.

webpack soll eine Bundle-Datei bundle.js im Verzeichnis dist

des Projekts erzeugen. Diese Bundle-Datei referenziert man

in der index.html (Listing 3).

Die Idee zu diesem Beispiel ist eine Website mit einem Ar-

tikel, an deren Ende sich ein Kommentarbereich (das Element

aside mit der ID comments) befindet. Dieser Kommentarbe-

reich soll mit React gerendert und der State mit Redux ver-

waltet werden.

Dumme Komponenten
Die Integration von React mit Redux teilt React-Komponen-

ten in Smart Components und Dumb Components ein. Letz-

tere sind schlicht und einfach herkömmliche React-Kompo-

nenten, die für sich nichts von einem vorhandenen Redux-

{

 "name": "redux-artikel",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\"

 && exit 1"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "react": "^0.14.2",

 "react-dom": "^0.14.2",

 "react-redux": "^4.0.0",

 "redux": "^3.0.4",

 "redux-thunk": "^1.0.0"

 },

 "devDependencies": {

 "babel-core": "^5.8.22",

 "babel-loader": "^5.3.3",

 "webpack": "^1.12.3"

 }

}

Listing 1: package.json
▶

var webpack = require('webpack');

module.exports = {

 devtool: "inline-sourcemap",

 context: __dirname + '/app',

 entry: "./index",

 output: {

 path: __dirname + "/dist",

 filename: "bundle.js"

 },

 module: {

 loaders: [

 {

 test: /\.js$/, exclude: [/node_modules/],

 loader: "babel-loader"

 }

]

 }

}

Listing 2: webpack.config.js

46 1.2016  www.webundmobile.de

JavaScriptHTML /CSS / Javascript

Container wissen. Die folgende Komponente soll Kommentar

objekte auf einer Website rendern:

import React from 'react'

let Comment = (props) => (

 <div className='comment'>{props.comment.text}</div>

);

Es wird ein Kommentarobjekt in den props erwartet, und des-

sen Attribut text enthält den Kommentartext. Es gibt keiner-

lei Verbindungen zu Redux. Beachten Sie hier, dass der Im-

port von React notwendig ist, da die Komponente JSX-Code

enthält, auch wenn es keine direkt sichtbare Verwendung der

Variable React gibt.

Die zweite Komponente NewCommentBox ist zwar schon

etwas komplizierter, aber auch diese ist eine Dumb Compo-

nent (Listing 4). Über ein Textfeld kann man einen Kommen-

tar eingeben, und bei einem Klick auf die Schaltfläche mit der

Beschriftung Save werden der Wert des Textfelds und die ak-

tuelle Zeit an den über die props übergebenen Event Hand-

ler onSaveClick übergeben. Die NewCommentBox wird mit

einer Liste von Kommentaren zusammen als neue Kompo-

nente Comments zusammengefasst:

import React, {Component} from 'react';

import NewCommentBox from './NewCommentBox'

import Comment from './Comment'

export default (props) => {

 return (

 <div>

 <NewCommentBox

 onSaveClick={props.actions.createComment}/>

 <div>

 {

 props.comments.map(

 c=>(<Comment key={c.id} comment={c}/>)

)

 }

 </div>

 </div>

)

};

Die NewCommentBox bekommt hier einen Ereignis-Handler,

der unter props.actions.createComment verfügbar sein soll.

Die Liste der Kommentare wird einfach über die props in ei-

nem Attribut comments übergeben. Auch wenn dieser Code

bereits ziemlich anwendungsspezifisch aussieht – auch Com-

ments ist letztlich eine von Redux vollkommen unabhängige

React-Komponente.

Reducer
Wie bereits beschrieben wird der in einem Redux-Store ge-

speicherte Zustand ausschließlich anhand von Actions und

innerhalb der Reducer geändert. Der Reducer ist ein essenzi-

eller Bestandteil des Systems und berechnet anhand des ak-

tuellen Zustands und einer Action den Folgezustand. Für das

Kommentar-UI kann der initiale Zustand und der zuständige

Reducer wie in Listing 5 gezeigt aussehen.

Die Konstante initialState enthält den Zustand, mit dem die

Anwendung initialisiert werden soll. Der Reducer selbst ist le-

diglich eine Funktion, die zwei Parameter erhält: state und

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Ein Artikel</title>

 </head>

 <body>

 <h1>Artikel</h1>

 <p>

 Lorem ipsum dolor sit amet, consectetur

 adipisicing elit.

 Aspernatur blanditiis, doloribus libero porro

 quibusdamrecusandae voluptate voluptatum.

 Asperiores beatae deleniti, eius illum maxime,

 natus omnis

 quia quo, rerum sint voluptates.

 </p>

 <aside id="comments">

 </aside>

 <script src="dist/bundle.js"></script>

 </body>

</html>

Listing 3: index.html

import React, {Component} from 'react';

export class NewCommentBox extends Component {

 render() {

 return <div><input type="text" ref="input"/>

 <button onClick={(e)=> this.handleClick(e) }>

 Save

 </button>

 </div>

 }

 handleClick(ev) {

 const node = this.refs.input;

 const text = node.value.trim();

 this.props.onSaveClick(text, Date.now());

 node.value = ''

 }

}

Listing 4: NewCommentBox.js

47www.webundmobile.de  1.2016

JavaScript HTML /CSS / Javascript

action. In vielen Redux-Beispielen sieht man, dass Reducer

mittels switch implementiert werden. Dafür gibt es keine Not-

wendigkeit. Es ist genauso leicht möglich, Objektliterale als

Maps zu benutzen, um damit die Action-Typen auf Funktio-

nen abzubilden.

Wie auch immer: Der Reducer ermittelt anhand des Action-

Typs, was zu tun ist. Kennt der Reducer den Typ nicht, dann

gibt er den übergebenen State unverändert zurück. Der ini-

tiale Zustand wird als Default-Parameter übergeben. Der Re-

ducer des Beispiels kennt drei Actions:
�� �Mit NEW_COMMENT soll ein neuer Kommentar erzeugt

werden können. Dazu übernimmt er den aktuellen Zustand

und ersetzt lediglich das Array unter comments. Bei diesem

übernimmt er wiederum alle bereits vorhandenen Elemen-

te und fügt nur ein neues vorne an. Der Inhalt des neuen

Kommentars wird aus den Attributen text und id der Action

entnommen. Der ursprünglich übergebene Zustand bleibt

unverändert. Dieses Beispiel benutzt die erst ab ES2016 an-

gedachte Object Spread-Syntax, mit der es sehr leicht mög-

lich ist, neue Objekte aus bestehenden zu erzeugen.
�� �Die Action REQUEST_COMMENTS wird dazu genutzt, zu

signalisieren, dass die Anwendung Kommentare vom Ser-

ver anfragt. Dies soll einmal nach dem Laden der Seite er-

folgen. Der Zustand verändert sich lediglich in einem

Punkt: Das Flag requestingComments wird auf true gesetzt,

um anzuzeigen, dass gerade Daten geladen werden.
�� �Sobald die Daten vom Server empfangen wurden, kann die

Action RECEIVE_COMMENTS genutzt werden, um die er-

haltenen Kommentare verarbeiten zu lassen: Der Reducer

ersetzt in diesem Fall einfach alle Kommentare mit den

empfangenen und setzt auch das Flag requestingCom-

ments wieder auf false.

Mit diesem Reducer sind die Transformationsmöglichkeiten

vollständig beschrieben. Es gibt keine Stelle im Programm,

welche den Anwendungszustand unabhängig davon modifi-

ziert. Wenn man den Code des Reducers näher betrachtet,

fällt auf, dass es sich um reinen JavaScript-Code handelt. Zu-

gegeben, es kommen einige über Babel bereitgestellte neue

Features zum Einsatz, aber es gibt keinerlei Abhängigkeit zu

einem Framework, auch nicht zu Redux. Ein Reducer ist

schlicht und einfach eine JavaScript-Funktion mit einer defi-

nierten Schnittstelle.

Actions und Action Creators
Wie die Actions vom Reducer verarbeitet werden ist nun klar

– doch wie werden sie erzeugt? Die Datei actions.js enthält

die zugehörigen Action Creators:

// file: app/actions.js

export function createComment (text, id) { ▶

const initialState = {

 requestingComments: false,

 comments: []

};

export default function comments(state =

initialState, action) {

 switch (action.type) {

 case 'NEW_COMMENT':

 return {

 ...state,

 comments: [

 {text: action.text, id: action.id},

 ...state.comments

]

 };

 case 'REQUEST_COMMENTS':

 return {...state, requestingComments: true};

 case 'RECEIVE_COMMENTS':

 return {

 requestingComments: false,

 comments: action.payload

 };

 default:

 return state;

 }

}

Listing 5: reducers.js

const storedComments = [

 { id:1, text: "Kommentar 1" },

 { id:2, text: "Kommentar 2" },

 { id:3, text: "Kommentar 3" }

];

export function requestComments () {

 return {

 type: "REQUEST_COMMENTS"

 }

}

export function receiveComments (comments) {

 return {

 type: "RECEIVE_COMMENTS",

 payload: comments

 }

}

export function fetchComments () {

 return (dispatch) => {

 dispatch(requestComments());

 setTimeout(()=>{

 dispatch(receiveComments

 (storedComments));

 }, 2000);

 }

}

Listing 6: Fortsetzung von actions.js

48 1.2016  www.webundmobile.de

JavaScriptHTML /CSS / Javascript

 return {

 type: "NEW_COMMENT",

 text: text,

 id: id

 }

}

Der einfache Action Creator createComment erhält als Para-

meter den Text und die ID eines neuen Kommentars. Der Ac-

tion Creator ist einfach nur eine Funktion, die ein Objektlite-

ral mit dem Action-Typ und den notwendigen Daten der Ac-

tion zurückgibt. Mehr ist nicht zu tun (Listing 6).

Die drei Action Creators requestComments, receiveCom-

ments und fetchComments sind ein zusammengehöriges Trio,

das den Ablauf einer asynchronen Serverkommunikation be-

schreibt. Die ersten beiden Action Creators sind dabei noch

herkömmlich und liefern einfach synchron die zugehörige

Action zurück.

Bei requestComments genügt der Action-Typ, damit der

Reducer weiß, dass er jetzt das Flag requestingComments set-

zen muss. Der Action Creator receiveComments ist ebenfalls

synchron, er bekommt die empfangenen Kommentare als Pa-

rameter und erzeugt eine passende Action damit. Doch zwi-

schen diesen beiden Actions findet üblicherweise eine asyn-

chrone Kommunikation mit dem Server statt.

Redux kann jedoch im Basisumfang nur mit synchronen

Action Creators umgehen. Für asynchrone Action Creators

kann man Redux deshalb mit Zusatzmodulen erweitern.

Ein sehr einfaches Modul dafür ist redux-thunk, das vom

selben Entwickler wie Redux stammt. Sobald diese Erweite-

rung aktiv ist, kann man in einem Action Creator nicht nur

Actions (also Objekte mit Action-Typ-Attribut), sondern auch

eine Funktion zurückgeben. Diese zurückgegebene Funkti-

on erhält eine dispatch-Funktion als Parameter, mit der man

eine Action an den Store schicken kann.

Der Action Creator fetchComments simuliert ein asynchro-

nes Ablaufmuster durch einen Aufruf von setTimeout. Noch

vor dem Aufruf wird mit dispatch() die Action REQUEST_

COMMENTS per requestComments() erzeugt und an den

Store geschickt. Danach erfolgt der Aufruf von setTimeout().

Wenn dieser abgelaufen ist, dann wird wiederum die Funk

tion dispatch() aufgerufen: Diesmal jedoch mit dem Ergebnis

des Action Creators receiveComments().

Der Store und die Middlewares
Doch wie kann man eine Erweiterung wie redux-thunk zu

Redux hinzufügen? Das Geheimnis sind die sogenannten

Middlewares. Die Datei store.js enthält den Store des Bei-

spielprogramms. Ein Redux-Store wird mit der Funktion

import React from 'react';

import {bindActionCreators} from 'redux'

import {Provider, connect} from 'react-redux'

import * as CommentActions from './actions'

import Comments from './components/Comments'

function mapStateToProps(state) {

 return {

 comments: state.comments,

 requestingComments: state.requestingComments

 }

}

function mapDispatchToProps(dispatch) {

 return {

 actions: bindActionCreators(CommentActions,

 dispatch)

 }

}

let App = (props) => (

 props.requestingComments

 ?<p>Requesting Comments...</p>

 :<Comments {...props}/>

);

export default connect(mapStateToProps,

mapDispatchToProps)(App);

Listing 7: App.js

import React from 'react'

import {render} from 'react-dom'

import {Provider} from 'react-redux'

import store from './store'

import App from './App'

import {fetchComments} from './actions'

render(

 <Provider store={store}>

 <App comments={comments}/>

 </Provider>,

 document.getElementById("comments")

);

store.dispatch(fetchComments());

Listing 8: index.js

�� �Redux-Website
http://redux.js.org

�� �Facebook Flux
https://facebook.github.io/flux

Links zum Thema

49www.webundmobile.de  1.2016

JavaScript HTML /CSS / Javascript

createStore() erzeugt, indem man ihr die Reducer übergibt.

Im einfachsten Fall reicht also:

// file: app/store.js (ohne Middleware)

import {createStore} from 'redux'

import reducers from './reducers'

export default createStore(reducers);

Beachten Sie: In dieser Datei wird überhaupt das erste Mal

das Paket redux importiert. Alle bisherigen Module waren

nicht abhängig von Redux, sondern bestehen letztlich aus

herkömmlichem JavaScript. Diese geringe Kopplung macht

eine Migration des Codes einfacher und zeigt, wie simpel Re-

dux ist. Möchte man jedoch eine Redux-Erweiterung (Middle

ware) nutzen, dann benötigt man die Funktion applyMiddle-

ware und erzeugt damit einen Wrapper um createStore:

import {createStore, applyMiddleware} from 'redux';

import thunk from 'redux-thunk';

import reducers from './reducers'

const createStoreWithMiddleware =

applyMiddleware(thunk)(createStore);

export default createStoreWithMiddleware(reducers);

Action Creators, Reducer und Store sind damit bereit. Auch

die notwendigen Dumb-Components wurden bereits imple-

mentiert. Was nun noch fehlt, ist die Anbindung des Stores an

diese React-Komponenten. Dazu dient eine sogenannte

Smart-Component, die im Beispiel in der Datei App.js imple-

mentiert wird (Listing 7). Die Funktion mapStateToProps() er-

hält den aktuellen State vom Redux-Store und bildet ihn auf

ein Objekt ab, das in die props der Smart Component einge-

mischt wird. Damit werden Inhalte des Redux-Store in React-

Komponenten verfügbar gemacht. Damit die Dumb Compo-

nents nichts vom Store und Dispatch wissen müssen, erzeugt

man mit bindActionCreators() in der Funktion mapDispatch-

ToProps() ein Objekt actions, das Callback-Funktionen für al-

le Actions aus actions.js enthält. Der Programmierer muss

dann nur noch die Callback-Funktion aufrufen und kann so

den Action Creator benutzen und per dispatch() die neue Ac-

tion an den Store senden.

Die Komponente App erhält in ihren props die durch map-

StateToProps() und mapDispatchToProps() bereitgestellten

Daten und Action-Callbacks. Im Beispiel prüft die Kompo-

nente mit props.requestingComments, ob gerade Kommenta-

re abgerufen werden. Ist dies der Fall, dann wird der Text Re-

questing Comments … angezeigt; andernfalls wird die Com-

ments-Komponente erzeugt.

Die Verbindung zwischen dieser React-Komponente und

dem Redux-Store erfolgt über den Aufruf der Funktion con-

nect mit den Funktionen mapStateToProps und mapDispatch-

ToProps. Diese Smart Component hängt nun wirklich von

Redux ab und funktioniert nur, wenn eine ihrer Elternkom-

ponenten einen Redux-Store anbietet. Wie dies funktioniert,

sieht man in der Datei index.js (Listing 8).

Dies ist einerseits der Startpunkt der Anwendung, und an-

dererseits sieht man hier auch den Toplevel-Render-Aufruf

von React. Die Wurzelkomponente ist Provider aus dem Pa-

ket react-redux. Mit Provider stellt man einen Store an die

Kinder der Komponente zur Verfügung – in diesem Fall ist das

die Smart-Component-App.

Ein Toplevel-Dispatch von fetchComments() sorgt anschlie-

ßend hier dafür, dass die Kommentare geladen werden und

App sich entsprechend neu rendert.

Fazit
Redux setzt konsequent auf funktionale Konzepte, um ein er-

staunlich kleines und dennoch mächtiges Framework zur

Verwaltung des Anwendungszustands zu realisieren. Die Er-

weiterbarkeit durch Middlewares wird bereits für Debug-

Werkzeuge, asynchrone Action Creators und vieles mehr ge-

nutzt. Entwickler, die noch wenig Erfahrung mit funktionaler

Programmierung haben, tun sich naturgemäß schwerer mit

dem Einstieg in ein solches Framework – dieser Aufwand

lohnt sich jedoch. Es gibt kaum einen stärkeren Trend als den,

funktionale Programmierkonzepte im Mainstream zu etablie-

ren. Viele Entwickler erkennen heute, dass die Kombination

aus veränderlichem Zustand (Mutable State) und Asynchro-

nität zu schwer pflegbaren und instabilen Systemen führt.

Redux ist auch ein gutes Beispiel für den Entwurf moder-

ner JavaScript-Frameworks: Actions, Action Creators, Redu-

cers und State sind allesamt Plain Old JavaScript Objects. Das

reduziert die Bindung an das Framework und erleichtert die

Wiederverwendung des Codes bei einer Migration. Werk-

zeuge wie die Redux-Devtools (Bild 5) erleichtern das Debug-

gen erheblich. Selten kannte man vorher eine derart detail-

lierte Übersicht des Anwendungszustands.� ◾

Werkzeuge wie die Redux-Devtools erleichtern das Debuggen

(Bild 5)

Jochen H. Schmidt
ist als Autor, Berater und Software-Entwickler

tätig. Schwerpunkte seiner Aktivitäten sind

Webentwicklung und Webtechnologien. Er ist

Verfasser von bekannten Fachbüchern zum

Thema Common Lisp.

50 1.2016  www.webundmobile.de

CD-Inhalt 1/2016

Auf der Heft-CD finden Sie Werkzeuge für

Webentwickler sowie nützliche Tools.

CD-Highlights
Überblick

Weitere Highlights:

Autohotkey 1.1.22.09
Mit kleinen Skripts automatisiert Autohotkey immer wiederkehren-

de Windows-Aufgaben. Für die tägliche Arbeit oder die Weitergabe

per Download lassen sich die erstellten Skripts dank des mitgelie-

ferten Compilers auch in eigenständige EXE-Programme umwan-

deln. Um neue Skripts zu erstellen, genügt ein einfacher Texteditor.

Ditto 3.21.28.0
Die Zwischenablage von Windows, die Sie zum Kopieren und Einfü-

gen nutzen, bietet keine Extras. Das Gratis-Tool Ditto verwandelt die

Zwischenablage in ein intelligentes Archiv, aus dem Sie jederzeit zu-

vor kopierte Bilder, Texte oder Dateien abrufen. Eine Suche fördert

auch ältere Zwischenablageeinträge rasch wieder zutage.

Free File Sync 7.6
Das Tool erleichtert es, Daten an unterschiedlichen Speicherorten

auf dem gleichen Stand zu halten. Dazu synchronisiert Free File

Sync Ordner auf Festplatten, USB-Sticks, NAS-Servern und Online-

Speichern. Dank eingebauter Versionskonfliktkontrolle werden kei-

ne Dateien versehentlich überschrieben.

WinSCP 5.7.6
Der grafische FTP-Client WinSCP sichert Ihre Datentransfers über

das Internet per Secure FTP. Als Verschlüsselungsstandards stehen

dazu SSH1 und SSH2 zur Verfügung. Oft genutzte Verbindungen las-

sen sich in einer Session-Liste speichern, und eine Synchronisations-

option gleicht das lokale und das entfernte Verzeichnis ab.

Windows System Control Center 2.5.0.3
Mit dem WSCC als Schaltzentrale hat man von einem einheitlichen

Menü aus Zugriff auf über 250 System-Tools. Ein Update-Manager

hält die Hilfsprogramme stets aktuell. Installieren Sie das Programm

und starten Sie es. Das Tool sucht nun online nach verfügbaren Pro-

grammen, lädt und installiert diese im Anschluss.

NetBeans IDE ist eine quelloffene Entwicklungsumgebung, die

komplett in der Programmiersprache Java geschrieben wurde.

NetBeans IDE unterstützt unter anderem C, C++ und dynami-

sche Programmiersprachen. Zusätzlich wurden sogenannte

Packs entwickelt, welche die IDE um Funktionsmöglichkeiten

erweitern. Die IDE setzt ein Grundverständnis der verwendeten

Programmiersprachen, Bibliotheken und Frameworks voraus.

Das Paket enthält NetBeans Platform SDK, Java SE, Java FX,

Java Web und EE, Java ME, Java Card 3 Connected, Ruby, C/C++,

Groovy und PHP. Als Server werden GlassFish Server Open

Source Edition und Apache Tomcat mitgeliefert.

NetBeans IDE 8.1

Das Web-Authoring-Programm unterstützt Sie beim Aufbau

einer standardkonformen Website. Die Software nutzt dazu

Technologien wie HTML5, CSS3 und jQuery. Sie können fertige

Vorlagen einsetzen oder Projekte von Grund auf neu aufbauen.

openElement wurde als visuelles Werkzeug entwickelt, um die

Produktivität zu steigern. Der von openElement generierte

Code ist zu 100 Prozent W3C-konform, SEO-ready und zeigt

Webseiten korrekt auf jedem Browser oder Gerät.

openElement 1.50 R4

Jetzt kostenlos testen!

Praxiswissen für Entwickler!
Testen Sie jetzt 2 kostenlose Ausgaben und erhalten Sie
exklusiven Zugang zu unserem Archiv.

webundmobile.de/probelesen

2 x
gratis!

52 1.2016  www.webundmobile.de

BootstrapHTML /CSS / Javascript

D ie Anforderungen an Frameworks für die

Frontend-Entwicklung sind hoch: War

früher der Hauptbestandteil solcher Frame-

works CSS, so gehört heute selbstverständlich

JavaScript für ausgefeilte interaktive UI-Kom-

ponenten wie etwa Tabs, Accordions und

Dropdown-Menüs dazu. Zusätzlich muss ein

Framework in der heutigen Zeit responsiv

sein. Webentwickler erwarten außerdem oft

ein ausgefeiltes Rastersystem, und schließlich

sind viele auch an die komfortablere Arbeit mit

CSS-Präprozessoren wie LESS und Sass ge-

wöhnt, sodass das Framework auch hierfür

eine Unterstützung bieten sollte. Ein Frame-

works, das alle diese Erwartungen erfüllt, ist

Boostrap.

Bootstrap wurde 2010 von Twitter (damals

noch unter dem Namen Twitter Blueprint) zu-

nächst für interne Zwecke entwickelt. Man

suchte nach einer Lösung, um die Entwicklung von Webappli-

kationen auf Basis von HTML5 und CSS3 zu vereinfachen,

um damit interne Analyse-Tools und Verwaltungswerkzeuge

zu realisieren.

Bald schon merkte man aber, dass sich das Framework

auch für andere Anwendungsfälle eignen würde, und hat es

daher 2011 auf GitHub als Open-Source-Projekt freigegeben.

Bootstrap bezeichnet sich selbst als das beliebteste HTML-,

CSS- und JS-Framework der Welt, um responsive und Mobi-

le-first-Projekte im Web zu erstellen. Der Claim ist zwar

selbstbewusst, hat aber auch eine gewisse Substanz.

Eineinhalb Jahre nach Bootstrap 3 setzt das Framework zum nächsten Versionssprung an.

Versionssprung
Bootstrap 4

So ist das Framework beispielsweise seit Jahren eines der

beliebtesten Repositories auf GitHub und man geht davon

aus, dass 13 Prozent aller Websites, die JavaScript verwen-

den, auch Bootstrap haben. Das sind in etwa 9 Prozent aller

Websites im Web. Damit ist Bootstrap nach jQuery die belieb-

teste JavaScript-Bibliothek überhaupt (Bild 1).

Das ist Grund genug für die Entwickler, diesen Erfolg zu

festigen und das schon etwas betagte Framework einer Ge-

neralüberholung zu unterziehen.

Zum Zeitpunkt der Erstellung des Artikels befand sich das

Framework noch in der Alpha-Phase, aber im Unterschied zu

<!DOCTYPE html>

<html lang="en">

 <head>

 <!-- Required meta tags always come first -->

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

 initial-scale=1">

 <meta http-equiv="x-ua-compatible"

 content="ie=edge">

 <!-- Bootstrap CSS -->

 <link rel="stylesheet" href="css/bootstrap.css">

 </head>

 <body>

 <div class="container">

 <h1>Hello, world!</h1>

 web & mobile

 DEVELOPER

 </div>

 <!-- jQuery first, then Bootstrap JS. -->

 <script src="js/jquery.min.js"></script>

 <script src="js/bootstrap.js"></script>

 </body>

</html>

Listing 1: index.html

Homepage: Die Bootstrap-Website (Bild 1)

53www.webundmobile.de  1.2016

Bootstrap HTML /CSS / Javascript

herkömmlicher Software kann man diesen Zu-

stand bereits als sehr stabil bezeichnen. Es ist da-

mit zu rechnen, dass die finale Version von Boot-

strap 4 um den Jahreswechsel herum auf den

Markt kommen wird.

Installation von Bootstrap
Man kann Bootstrap traditionell von http://get

bootstrap.com/getting-started/#download herun-

terladen. Sollte dort die Version 4 noch nicht er-

hältlich sein, so können Sie auf http://v4-alpha.

getbootstrap.com/getting-started/download aus-

weichen.

Grundsätzlich ist es entweder möglich, die Sour-

cen minifiziert und kompiliert zu laden oder aber

komplett (inklusive Dokumentation, Sass-Dateien et cetera).

Weiterhin ist es möglich, Bootstrap über einen der folgenden

Paket-Manager zu erhalten:
�� Bower (bower install bootstrap)
�� npm (npm install bootstrap)
�� Meteor (meteor add twbs:bootstrap)
�� Composer (composer require twbs/bootstrap)

Zusätzlich gibt es ab sofort drei Custom-Builds, nämlich Re-

boot (enthält variables/mixins, Normalize und Reboot, aber

kein JavaScript), Grid only (enthält variables/mixins und das

Grid-System, aber kein JavaScript) und Flexbox (enthält

Bootstrap mit aktiviertem Flexbox-Support).

Um die ersten Schritte mit Bootstrap zu machen, erstellen

wir ein Verzeichnis bootstrap und dort zwei weitere Verzeich-

nisse css und js. In das Verzeichnis css kopieren wir die Datei

bootstrap.css aus dem Unterverzeichnis dist/css der Boot-

strap-Sourcen. Und in das js-Verzeichnis schließlich die Da-

tei bootstrap.js aus dem Unterverzeichnis dist/js.

Nun benötigen wir noch jQuery, das wir unter https://ajax.

googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js herun-

terladen und ebenfalls im js-Verzeichnis speichern können.

Anschließend legen wir eine Datei index.html direkt im Ver-

zeichnis bootstrap an (Listing 1).

Hier ist auch gut die Ladereihenfolge der einzelnen Kom-

ponenten zu sehen, die man einhalten sollte, damit Bootstrap

einwandfrei funktioniert (Bild 2).

Bootstrap 4 unterstützt den IE 8 nun nicht mehr und kann

daher mit einigen Features aufwarten (zum Beispiel rem-Un-

terstützung), die vorher nicht, nur schwierig oder nur mit Hil-

fe von Polyfills möglich waren.

Die Komponenten well, panel und thumbnail wurden ent-

fernt und durch cards ersetzt. Glyphicons wurden komplett

entfernt, da mit Font Awesome (https://fortawesome.github.

io/Font-Awesome) sowie Octicons (https://octicons.github.

com) leistungsfähige Alternativen zur Verfügung stehen.

Die primäre CSS-Einheit ist nun rem und nicht mehr px, die

Einheit für die Media Queries em (anstelle von px). Die glo-

bale Font-Größe ist von 14 px auf 16 px angewachsen. Für die

Konfiguration des zu erzeugenden CSS gibt es nun die Datei

scss/_variables.scss, in der man Einstellungen treffen und

dann das CSS erneut kompilieren kann. Dazu zählen Farben,

Optionen, Abstände, Einstellungen für das <body>-Element,

Links, Grid Breakpoints, Grid Container, Grid Columns und

Typografie.

Neue Utility-Klassen
Um Abstände und Ränder für beliebige Elemente festzule-

gen, wurde ein neues Set an Utility-Klassen eingeführt. Die-

se bestehen aus drei Teilen, die mit einem Minuszeichen ge-

trennt sind. Margins werden mit m, Paddings mit p bezeich-

net. Will man alle vier Seiten ansprechen, verwendet man a,

ansonsten t für oben, r für rechts, b für unten l für links, x für

rechts und links und y für oben und unten. Als dritte Kom- ▶

Beispiel: Das Hello World-Beispiel (Bild 2)

// Margins

.m-a-0 { margin: 0 !important; }

.m-t-0 { margin-top: 0 !important; }

.m-r-0 { margin-right: 0 !important; }

.m-b-0 { margin-bottom: 0 !important; }

.m-l-0 { margin-left: 0 !important; }

.m-x-0 { margin-right: 0 !important; margin-left: 0

!important; }

.m-y-0 { margin-top: 0 !important; margin-bottom: 0

!important; }

// $spacer steht für 1rem bzw. 16px

.m-a { margin: $spacer !important; }

.m-t { margin-top: $spacer-y !important; }

.m-a-md { margin: ($spacer * 1.5) !important; }

.m-t-md { margin-top: ($spacer-y * 1.5) !important; }

// Padding

.p-a-0 { padding: 0 !important; }

.p-t-0 { padding-top: 0 !important; }

Listing 2: _utilities-spacing.scss

54 1.2016  www.webundmobile.de

BootstrapHTML /CSS / Javascript

ponente wird entweder 0 (für den Wert 0) oder aber der

Breakpoint-Identifier angeben (xs, sm et cetera).

Listing 2 zeigt die zugehörigen Sass-Anweisungen zur bes-

seren Erläuterung.

Sass statt LESS
Während Bootstrap 3 noch LESS als hauptsächlichen CSS-

Präprozessor unterstützte (und ein Sass-Port erst nach dem

Release von 3.0 auf den Markt kam), wurde dies in Bootstrap

4 zugunsten von Sass aufgegeben.

Die Gründe hierfür liegen auf der Hand: Einerseits konnte

die Zeit für die Kompilierung dank libSass deutlich reduziert

werden, und zudem ist die Entwicklergemeinde rund um

Sass deutlich größer und aktiver, sodass zu erwarten ist, dass

sich dies positiv auf das Projekt auswirken wird.

Überarbeitetes Grid
Das Grid-System wurde generalüberholt. Die Syntax wurde

zwar nahezu beibehalten, intern werden aber jetzt für die Be-

rechnung der Schriftgrößen rem (und nicht mehr em) verwen-

det. Damit ist nun responsive Typografie ernsthaft möglich.

Zudem wurde ein Breakpoint für besonders schmale Dis-

plays eingeführt (per Konfiguration unter 480 px). Dieser hat

nun den Grid-Identifier xs erhalten, alle weiteren (sm, md, lg,

xl) sind daher entsprechend breiter als früher. Und es gibt

neue Mixins, um schnell Breakpoints zu erzeugen (Listing 3).

Flexbox
Obwohl der von Bootstrap 4 unterstützte Internet Explorer 9

Flexbox noch nicht unterstützt, wurde dennoch eine optiona-

le Unterstützung dafür eingebaut. Diese muss allerdings in

den Settings mit $enable-flex: true !default; eingeschaltet

werden. Ist die Flexbox-Unterstützung aktiviert, werden fol-

gende Änderungen vorgenommen:
�� �Das gesamte Gridsystem wird von float auf display: flex; um-

gestellt.
�� �Input-Gruppen werden von display: table; auf display: flex;

umgestellt.
�� �Die Media-Komponenten werden ebenfalls von display: tab-

le; auf display: flex; umgestellt.

Bisher verwendete Bootstrap zum Reset normalize.css (https:

//necolas.github.io/normalize.css). Diese wurde nun durch

die Eigenentwicklung reboot.css ersetzt, die auf Normalize

basiert, aber nun deutlich eleganter und optimierter ist. Infor-

mationen hierzu gibt es unter http://v4-alpha.getbootstrap.

com/content/reboot.

Card-Komponente
Die Komponenten Panels, Wells und Thumbnails wurden zu-

gunsten der neuen Komponente Card aufgegeben. Diese

konsolidiert die bisherigen Features, ist aber deutlich fle

// Erstellt eine Media Query: @media (min-width)

@include media-breakpoint-up(xs) { ... }

@include media-breakpoint-up(sm) { ... }

@include media-breakpoint-up(md) { ... }

@include media-breakpoint-up(lg) { ... }

@include media-breakpoint-up(xl) { ... }

// Erstellt eine Media Query: @media (max-width)

@include media-breakpoint-down(xs) { ... }

@include media-breakpoint-down(sm) { ... }

@include media-breakpoint-down(md) { ... }

@include media-breakpoint-down(lg) { ... }

@include media-breakpoint-down(xl) { ... }

Listing 3: Mixins

<div class="container">

 <h3 class="display-1">Bootstrap 4 Cards Demo</h2>

 <h4 class="title">Alle Optionen</h4>

 <div class="demo-card">

 <div class="card">

 <div class="card-header">

 Card Header

 </div>

 <img class="card-img-top btn-block" src="http://

 lorempixel.com/400/200/"/>

 <div class="card-block">

 <h4 class="card-title">Card Titel</h4>

 <h6 class="card-subtitle text-muted">Card

 Untertitel</h6>

 <p class="card-text">Überall dieselbe alte

 Leier. Das Layout ist fertig, der Text lässt auf

 sich warten. Damit das Layout nun nicht nackt im

 Raume steht und sich klein und leer vorkommt,

 springe ich ein: der Blindtext.</p>

 <ul class="list-group list-group-flush">

 <li class="list-group-item">Option 1

 <li class="list-group-item">Option 2

 <li class="list-group-item">Option 3

 </div>

 <div class="card-block">

 Card Link 1

 Card Link 2

 </div>

 <div class="card-block">

 Button

 </div>

 <div class="card-footer text-muted">

 Card Footer

 </div>

 </div>

 </div>

</div>

Listing 4: Card – alle Optionen

55www.webundmobile.de  1.2016

Bootstrap HTML /CSS / Javascript

xibler. Schauen wir uns zunächst eine Card an, die möglichst

viele Features beinhaltet (Listing 4).

Hier kann man gut den strukturellen Aufbau einer Card er-

kennen, die folgende Klassen bietet: card (Container, der die

Card beinhaltet), card-header / card-footer (Header und Foo-

ter), card-block (Abschnitt in der Card), card-text (Text auf

der Card), card-img-top / card-img-bottom (Bild oben bezie-

hungsweise unten), card-link (Auszeichnung für Links) und

card-title / card-subtitle (Titel und Untertitel) (Bild 3).

Die Komponente ist aber noch deutlich leistungsfähiger. So

kann man beispielsweise die Card

selbst invertieren und einfärben:

<div class="card card-inverse

card-primary text-center">

 <div class="card-block">

 <blockquote

 class="card-blockquote">

 <p>Das Layout ist fertig,

 der Text lässt auf sich

 warten.</p>

 <footer>Blindtext von <cite

 title="Source Title">

 http://www.blindtextgene

 rator.de</cite>

 </footer>

 </blockquote>

 </div>

</div>

Verwendet man die Klasse card-primary, erhält man eine

blaue Card. Weitere mögliche Klassen an dieser Stelle sind:

card-success (grün), card-info (hellblau), card-warning (gelb)

und card-danger (rot) (Bild 4). Will man mehrere Cards neben-

einander anordnen (Bild 5), so kann man entweder Card ▶

Card Komponente mit allen Optionen (Bild 3) Invertierte und eingefärbte Cards (Bild 4)

Card Decks: Mehrere Cards nebeneinander anordnen (Bild 5)

56 1.2016  www.webundmobile.de

BootstrapHTML /CSS / Javascript

Groups (dann gehören die Cards direkt zusammen) oder aber

Card Decks (dann werden die Cards individuell behandelt)

verwenden (Listing 5).

Will man zudem Masonry-Style Card Columns (http://ma

sonry.desandro.com) aufbauen, verwendet man schlicht <div

class="card-columns"> außen herum. Und schließlich kann

man ein Bild auch als Hintergrund verwenden und den Text

darüberlegen (Bild 6):

<article class="card card-inverse">

 <img class="btn-block img-responsive" src="http://

 lorempixel.com/400/200/" alt="Leaf on the street" />

 <div class="card-img-overlay">

 <h4 class="card-title">Card Titel</h4>

 <h6 class="text-muted">Autor</h6>

 <p class="card-text">Überall dieselbe alte Leier.

 Das Layout ist fertig, der Text lässt auf sich

 warten. Damit das Layout nun nicht nackt im Raume

 steht und sich klein und leer vorkommt, springe

 ich ein: der Blindtext.</p>

 </div>

</article>

In Bootstrap 4 ist es nun sehr einfach möglich, Tabellen zu in-

vertieren – hierzu ist lediglich die Klasse table-inverse not-

wendig (Bild 7):

<table class="table table-inverse">

 <tr>

 <th>Footer 1</th>

 <th>Footer 2</th>

 <th>Footer 3</th>

 </tr>

</tfoot>

<tbody>

 <tr>

 <td>Zelle</td>

 <td>Zelle</td>

<div class="demo-card">

 <div class="card-deck-wrapper">

 <div class="card-deck">

 <div class="card">

 <img class="card-img-top img-responsive"

 src="http://lorempixel.com/400/200/">

 <div class="card-block">

 <h4 class="card-title">Card Titel</h4>

 <p class="card-text">Überall dieselbe alte

 Leier. Das Layout ist fertig, der Text lässt

 auf sich warten. Damit das Layout nun nicht

 nackt im Raume steht und sich klein und leer

 vorkommt, springe ich ein: der Blindtext.</p>

 <p class="card-text"> <small class="text-muted">

 Aktualisiert: vor 5 Minuten</small>

 </p>

 </div>

 </div>

 <div class="card">

 <img class="card-img-top img-responsive"

 src="http://lorempixel.com/400/200/">

 <div class="card-block">

 <h4 class="card-title">Card Titel</h4>

 <p class="card-text">Überall dieselbe alte Leier.

 </p>

 <p class="card-text"><small class="text-muted">

 Aktualisiert: vor 5 Minuten</small></p>

 </div>

 </div>

 <div class="card">

 <img class="card-img-top img-responsive"

 src="http://lorempixel.com/400/200/">

 <div class="card-block">

 <h4 class="card-title">Card Titel</h4>

 <p class="card-text">Überall dieselbe alte Leier.

 Das Layout ist fertig, der Text lässt auf sich

 warten. </p>

 <p class="card-text"><small class="text-muted">

 Aktualisiert: vor 5 Minuten</small></p>

 </div>

 </div>

 </div>

 </div>

</div>

Listing 5: Card Decks

Card mit Hintergrundbild (Bild 6) Invers: Tabellen sehr einfach invertieren (Bild 7)

57www.webundmobile.de  1.2016

Bootstrap HTML /CSS / Javascript

Patrick Lobacher
ist Digital-Native, Entwickler, Berater, Trainer,

Coach und Autor zahlreicher Fachbücher und

Fachartikel. Er ist Vorstandsvorsitzender der

Pluswerk AG, die an zehn Standorten mit über

150 Mitarbeitern digitale Kommunikations

lösungen konzipiert, umsetzt und betreut.

 <td>Zelle</td>

 </tr>

</tbody>

</table>

Zudem gibt es nun sogenannte Reflow-Tables (hier heißt die

Klasse .table-reflow). Damit werden die Spalten und Zeilen

vertauscht. Weiterhin gibt es die folgenden kontextabhängi-

gen Klassen: .table-active, .table-success, .table-info, .table-

warning und .table-danger. Damit ist es möglich die Tabelle,

Zeilen oder Felder einzufärben. Schließlich wurden Klassen

eingeführt, um den Header zu invertieren (.thead-inverse)

und einzufärben (.thead-default).

Bootstrap 4 enthält darüber hinaus sogenannte Custom

Forms, mit denen komplett eigene Formular-Elemente er-

zeugt werden, die einerseits in allen Browsern gleich ausse-

hen sollen und zudem deutlich flexibler im Styling sind

(Bild 8). Die originalen Formularelemente werden ausgeblen-

det, wie in Listing 6 dargestellt.

Fazit
Bootstrap hat seine Hausaufgaben gemacht und das ohnehin

schon sehr gute Framework deutlich überarbeitet und moder-

nisiert. Vor allem die Card-Komponente, aber auch die ande-

ren Bestandteile und Änderungen sind gelungen und ma-

chen richtig Spaß in der Anwendung.� ◾

�� �Dokumentation zu Bootstrap 4 alpha
http://v4-alpha.getbootstrap.com/getting-started/
introduction

�� �Card-Demo Codepen
http://codepen.io/alexdevero/pen/JYpMEO

�� �Unterschiede Bootstrap 3 und 4
www.quackit.com/bootstrap/bootstrap_4/differences_
between_bootstrap_3_and_bootstrap_4.cfm

�� �Bootstrap-4-Tutorials
www.quackit.com/bootstrap/bootstrap_4/tutorial

�� �Bootstrap-4-Video-Tutorials
https://www.youtube.com/watch?v=buzksTcGxZo

Links zum Thema

<div>

 <label class="c-input c-checkbox">

 <input type="checkbox">

 Lebkuchen

 </label>

</div>

<div>

 <label class="c-input c-radio">

 <input id="boots" name="radio" type="radio">

 Lebkuchen

 </label>

 <label class="c-input c-radio">

 <input id="shoes" name="radio" type="radio">

 Plätzchen

 </label>

</div>

<div>

 <select class="c-select">

 <option selected>Bitte wählen...</option>

 <option value="1">Lebkuchen</option>

 <option value="2">Plätzchen</option>

 </select>

</div>

<div>

 <label class="file">

 <input type="file" id="file">

 </label>

</div>

Listing 6: Eigene Formular-Elemente

Eigene Formularelemente: Deutlich flexibler im Styling (Bild 8)

58 1.2016  www.webundmobile.de

BluetoothMobile Development

Das von der Bluetooth SIG als offener Indus­

triestandard verwaltete Funkprotokoll Blue­

tooth funktionierte problemlos, weil die diversen

unterschiedlichen Peripheriegeräte über eine ver­

gleichsweise kleine Gruppe von Profilen abge­

deckt waren (Tabelle 1).

Interessant wurde die Situation durch das Auf­

kommen preiswerter Bluetooth-Module, die das

Einbauen von Funk in Alltagsgagdets und White­

ware ermöglichten. Da die Entwicklung und Spe­

zifizierung eines neuen Profils immens aufwendig

ist, nutzten die Hersteller stattdessen proprietäre

Funkschnittstellen auf Basis des seriellen Kom­

munikationsprotokolls SPP.

Für App-Entwickler ergab dies eine höchst un­

befriedigende Situation: Wer in seinem Programm

Hardware von zwei verschiedenen Anbietern unterstützen

möchte, musste eine Hardware-Abstraktionsschicht imple­

mentieren (Bild 1).

Zudem erwies sich das verbindungsorientierte Funkproto­

koll für das Internet of Things (IoT) als weniger gut geeignet.

Der Scanprozess, der immerhin rund vierzehn Sekunden

dauert, ist in der Praxis ärgerlich. Außerdem war der Strom­

verbrauch alles andere als gering.

Unterschiede zum klassischen Bluetooth
Bluetooth LE unterscheidet sich aus physikalischer Sicht nur

wenig von klassischem Bluetooth. Das charakteristische Fre­

quenz-Hopping ist abermals mit von der Partie. Dadurch ist

sichergestellt, dass das Funkprotokoll auch in belasteten Um­

gebungen problemlos funktioniert.

Auf logischer Ebene gibt es massive Differenzen. Bluetooth

LE basiert im Grunde genommen auf den zwei in Bild 2 ge­

zeigten Profilen, die gemeinsam den Gutteil aller Einsatzsze­

narien abdecken.

GAP – der Begriff steht für Generic Access Profile – ist für

die Präsenzerkennung zuständig. Das Protokoll unterteilt Ge­

räte in Peripherals und Centrals. Erstere sind Datenquellen,

während die auf die Informationen zugreifenden Telefone

oder Computer als Central bezeichnet werden.

GAP-basierte Geräte kündigen ihre Anwesenheit durch

das Versenden von bis zu 31 Byte langen Paketen an, die als

Advertising Data bezeichnet werden. Ein optionaler zweiter

Teil der Spezifikation befasst sich mit dem Entgegennehmen

von Scan Response Requests, die mit einem ebenfalls bis zu

31 Byte langen Scan Response Data-Paket beantwortet wer­

den (Bild 3).

Bluetooth LE ist dank seines geringen Stromverbrauchs für das Internet of Things von

eminenter Bedeutung.

Offener Industriestandard
Bluetooth LE

Der eigentliche Austausch der Daten erfolgt über das als

GATT bezeichnete Generic Attribute Profile. Es spezifiziert

Möglichkeiten zum Austausch von Characteristics, die vom

Aufbau her an KV-Speicher erinnern. Zum Zweck der einfa­

cheren Katalogisierung spezifiziert die Bluetooth SIG Profile

und Services. Bild 4 zeigt, wo die einzelnen Elemente von

GATT im Gesamtsystem einzuordnen sind.

Deskriptoren dienen dabei – analog zu den in OpenStreet­

Map und in Graphendatenbanken verwendeten Tags – als

Ablage für zusätzliche Informationen. Ihre Verwendung lohnt

sich, wenn der Stromverbrauch auf Seiten des Senders mini­

miert werden soll: Wer eine geringere Datenmenge über­

trägt, verbraucht auch weniger Strom.

Serverspiele
Da der im Android SDK enthaltene Emulator Bluetooth nicht

unterstützt, wollen wir mit der Entwicklung eines GATT-Pe­

ripheriegeräts beginnen. Das dazu notwendige API steht erst

ab Android 5.0 zur Verfügung. Erstellen Sie in Android Stu­

dio ein Projektskelett namens NMGGattServer und wählen

Sie als Minimum-SDK die Version 5.0 aus.

Zum Zugriff auf die Bluetooth-Hardware sind Permissions

erforderlich. Öffnen Sie die Manifestdatei und adaptieren Sie

den Permissions-Block nach folgendem Schema:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android=

http://schemas.android.com/apk/res/android

package="com.tamoggemon.nmggattserver" >

<uses-permission android:name=

"android.permission.BLUETOOTH" />

HALs trennen Logik und Treiber voneinander (Bild 1)

59www.webundmobile.de  1.2016

Bluetooth Mobile Development

<uses-permission android:name=

"android.permission.BLUETOOTH_ADMIN" />

...

Google unterteilt die für Bluetooth zuständigen Permissions:

BLUETOOTH erlaubt das Verbinden mit dem Gerät bekann­

ten Partnern, während die Suche nach neuen Gegenstellen

die nur im Zusammenspiel mit BLUETOOTH funktionieren­

de Permission BLUETOOTH_ADMIN voraussetzt.

Der im Play Store enthaltene Zuteilungsalgorithmus kann

Ihre Applikation auf Geräte beschränken, die mit einem

Bluetooth-LE-Radio ausgestattet sind. Dazu müssen Sie fol­

gende Passage in die Manifestdatei einbinden:

<manifest xmlns:android=

http://schemas.android.com/apk/res/android

package="com.tamoggemon.nmggattserver" >

<uses-feature android:name=

"android.hardware.bluetooth_le"

android:required="true"/>

Google bittet in der Dokumentation darum, dass der uses-

Block immer eingebunden wird. Wenn Ihr Produkt auch oh­

ne Bluetooth-LE-Radio funktioniert, nutzen Sie stattdessen –

wie in unserem Beispiel – folgende Syntax:

<uses-feature android:name=

"android.hardware.bluetooth_le"

android:required="false"/>

Nach dem Laden der Activity prüft unser Programm, ob ihm

Bluetooth-Hardware zur Verfügung steht. Dies erfolgt durch

folgenden Code, der die Activity auf nicht kompatiblen Tele­

fonen durch Aufruf von finish() beendet:

protected void onCreate(Bundle savedInstanceState) {

 ...

 if (!getPackageManager().hasSystemFeature(

 PackageManager.FEATURE_BLUETOOTH_LE)) {

 Toast.makeText(this, "Dieses Telefon unterstützt

 BTLE nicht", Toast.LENGTH_SHORT).show();

 finish();

 }

}

Im nächsten Schritt müssen wir uns mit dem Bluetooth-LE-

Stack des Telefons verbinden. Die Managerklasse dient da­

bei als Schnittstelle zum Stack, während der eigentliche

Transmitter über eine Instanz von BluetoothAdapter abgebil­

det wird:

public class MainActivity extends Activity {

 BluetoothAdapter myAdapter;

 BluetoothManager myManager;

 @Override

 protected void onCreate(Bundle savedInstanceState)

 {

 ...

 BluetoothManager myManager;

 myManager = (BluetoothManager)

 getSystemService

 (Context.BLUETOOTH_SERVICE);

 myAdapter = myManager.getAdapter();

 if (myAdapter == null) {

 Toast.makeText(this,

 "Adaptererstellung fehlgeschlagen",

 Toast.LENGTH_SHORT).show();

 finish();

 return;

 }

Zur Erstellung eines Bluetooth-LE-Servers

rufen wir openGattServer auf und schreiben

sogleich einen Service samt dazugehörender

Characteristic ein:

Der Bluetooth-LE-Stack ist vergleichsweise einfach (Bild 2)

▶

Tabelle 1: Die Bluetooth SIG spezifiziert diverse Profile

Profil Kurzbeschreibung

Advanced Audio Distribution Profile Audioübertragung per Bluetooth-Luftschnittstelle

Dial-up Networking Profile Simuliert Modemverbindungen

Generic Access Profile Grundlegendes Protokoll, das für Gerätefindung
zuständig ist

LAN Access Profile / Personal Area
Networking Profile

Protokollfamilie, die Bluetooth zur Errichtung eines
Netzwerks für höhere Protokolle nutzt.

Object Push Profile An OBEX angelehntes Protokoll zum Austausch
von generischen Dateien

Serial Port Profile Simuliert RS232-artige Verbindung über die
Funkschnittstelle

SIM Access Profile Teilt die in einem Telefon befindliche SIM-Karte
mit anderen Geräten (Stichwort Autotelefon)

60 1.2016  www.webundmobile.de

BluetoothMobile Development

TextView myTextView=(TextView)findViewById(R.id.

textView);

myServer = myManager.openGattServer(this,

new NMGGattServerObserver(this, myTextView));

BluetoothGattService s = new BluetoothGattService

(NMGConstants.ServiceUUID,

BluetoothGattService.SERVICE_TYPE_PRIMARY);

myCharacteristic = new BluetoothGattCharacteristic

(NMGConstants.CharacteristicUUID,

BluetoothGattCharacteristic.PROPERTY_READ,

BluetoothGattCharacteristic.PERMISSION_READ);

myCharacteristic.setValue("NMG Test");

s.addCharacteristic(myCharacteristic);

myServer.addService(s);

Im Rahmen der Erstellung des BluetoothGattCharacteristic-

Objekts fragt der Bluetooth-Stack die Eigenschaften der Cha­

racteristic ab. Der Konstruktor nimmt zwei Bitfelder entge­

gen: Feld eins beschreibt die Eigenschaften der neu zu erstel­

lenden Characteristic, während Feld zwei die Lese- bezie­

hungsweise Schreibberechtigungen beschreibt.

Services und die zu ihnen gehörenden Charakteristika

werden durch GUIDs gekennzeichnet. Es handelt sich dabei

um eine sehr lange Zeichenfolge, die nach einem bestimm­

ten Schema aufgebaut ist. Ob der enormen Länge sind Kolli­

sionen sehr unwahrscheinlich. Be­

schaffen Sie sich die benötigten

GUIDs einfach aus einem GUID-

Generator Ihrer Wahl. Im Fall unse­

res Programmbeispiels liegen die

GUIDs zwecks einfacherem Hand­

ling in einer Convenience-Klasse,

die sie als zwei statische Variablen

exponiert:

public class NMGConstants {

 public static UUID

 CharacteristicUUID;

 public static UUID ServiceUUID;

 static{

 CharacteristicUUID=

 UUID.fromString

 ("0acea172-2a76-69a7-4e49-

 302ed371f6a8");

 ServiceUUID=UUID.fromString

 ("abcbe138-a00c-6b8e-7d44-

 4b63a80170c3");

 }

}

Damit fehlt nur noch die Einrich­

tung des Advertisers. Diese Klasse

ist für das Versenden der GAP-

Präsenzinformationen erforderlich:

Clients können den Server nur dann

finden, wenn der Advertiser aktiv

ist. Im Fall unseres Programms beginnt die Kommandofolge

mit dem Beschaffen einer Advertiserklasse, die sodann gegen

null geprüft wird:

myAdvertiser = myAdapter.getBluetoothLeAdvertiser();

if(myAdvertiser==null){

 Toast.makeText(this, "Servermodus nicht erlaubt!",

 Toast.LENGTH_SHORT).show();

 finish();

}

Google schaltet die Bluetooth-LE-Serverfähigkeit nur auf

jenen Telefonen frei, deren Hardware gleichzeitig als Server

und als Client agieren kann. Bei Nur-Clients liefert getBlue­

toothLeAdvertiser den Wert null zurück. Unter http://altbea

con.github.io/android-beacon-library/beacon-transmitter-de

vices.html findet sich eine von Drittanbietern gepflegte Kom­

patibilitätsliste, die weitere Informationen über Hardware­

support anbietet.

Wenn das als Basis dienende Gerät als Advertiser dienen

kann, so folgt die eigentliche Aktivierung der Klasse. Neben

Einstellungen zur zu verwendenden Sendeenergie sind auch

Informationen über die zu bewerbenden Dienste erforderlich:

else {

 AdvertiseSettings advertiseSettings = new

 AdvertiseSettings.Builder()

 .setTxPowerLevel

 (AdvertiseSettings.

 ADVERTISE_TX_POWER_MEDIUM)

 .setConnectable(true)

 .setAdvertiseMode

 (AdvertiseSettings.

 ADVERTISE_MODE_BALANCED)

 .build();

 AdvertiseData advertiseData =

 new AdvertiseData.Builder()

 .setIncludeTxPowerLevel(false)

 .addServiceUuid(new ParcelUuid

 (NMGConstants.ServiceUUID))

 .setIncludeDeviceName(true)

 .build();

 myAdvertiser.startAdvertising

 (advertiseSettings,

 advertiseData, advertiseData,

 advertiseCallback);

Wie im Fall des Servers ist auch hier

ein Observer erforderlich, der vom

Betriebssystem über eingehende

Ereignisse informiert wird. Im Fall

des Advertisers reicht es aus, eine

Instanz der vom System vorgegebe­

nen Klasse zu verwenden. Achten

Sie darauf, dass das Aktivieren des

Scanmodus zu einem massiven An­

stieg des Energieverbrauchs führt.

Der GAP-Prozess wird im per Advertising Interval

vorgegebenen Takt abgearbeitet (Bild 3)

61www.webundmobile.de  1.2016

Bluetooth Mobile Development

▶

Wir wollen an dieser Stelle ein

Textfeld in die Hauptseite ein­

pflegen, das im Lauf der Pro­

grammausführung mit weiteren

Informationen über die anfallen­

den Ereignisse bevölkert wird.

Diese Vorgehensweise ist – unter

anderem – deshalb hilfreich, weil

die Aktivitäten des Servers auf

diese Weise auch ohne ADB-Kon­

sole analysiert werden können:

<TextView android:text="@string/hello_world"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:id="@+id/textView" />

Bluetooth-Operationen können langwierig sein. Zwecks Si­

cherung der Reaktivität müssen Aufrufer ein Callback-Ob­

jekt übergeben, dessen Methoden vom Bluetooth-Stack beim

Auftreten bestimmter Ereignisse aufgerufen werden.

Alles asynchron
NMGGattServerObserver ist eine Implementierung des in

Listing 1 näher beschriebenen Observers. Wir beschränken

uns im Moment auf das Ausgeben von Statusinformationen.

Dank des Aufrufs der in der Superklasse implementierten

Kommunikationslogik müssen wir selbst keine Kommandos

an den GATT-Server absetzen.

Im Rahmen der Erzeugung der Listener-Klasse schreiben

wir die TextView-Instanz in eine globale Variable, in der sie

später zur Verfügung steht. Da Google BluetoothGattServer­

Callback mitunter außerhalb des GUI-Threads aufruft, imple­

mentieren wir zudem eine generische Methode zur sicheren

Manipulation des Inhalts der Textbox:

public class NMGGattServerObserver extends

BluetoothGattServerCallback {

 MainActivity myActivity;

 TextView myView;

 public void updateView(final String _s) {

 new Handler(Looper.getMainLooper()).post(new

 Runnable() {

 @Override

 public void run() {

 myView.setText(myView.getText() + "\n" + _s); }

 });

 }

 public NMGGattServerObserver(MainActivity _a,

 TextView _v) {

 super();

 myActivity =_a;

 myView=_v;

 }

Damit können wir uns der eigentlichen Kommunikation zu­

wenden. Verbindungen und Trennungen werden vom Be­

triebssystem durch Aufrufe von onConnectionStateChange

angezeigt. Unsere App quittiert sie mit dem Absetzen einer

Meldung in die Textbox:

@Override

public void onConnectionStateChange(BluetoothDevice

device, int status, int newState) {

 if(newState== BluetoothProfile.STATE_CONNECTED)

 {

 updateView("Verbindungszustand geändert:

 VERBUNDEN");

 }

 else if(newState==BluetoothProfile.STATE_DISCONNECTED)

 {

 updateView("Verbindungszustand geändert: GETRENNT");

 }

 super.onConnectionStateChange(device, status,

 newState);

}

Eingehende Leseereignisse handelt unser Listener nach

demselben Schema ab. Der Aufruf von super() sorgt dafür,

dass die in Android enthaltene Kommunikationslogik mit der

Verarbeitung des Ereignisses betraut wird:

@Override

public void onCharacteristicReadRequest(BluetoothDevice

device, int requestId, int offset, BluetoothGatt

Characteristic characteristic) {

 updateView("Leserequest ist eingegangen");

 super.onCharacteristicReadRequest(device, requestId,

 offset, characteristic);

 myActivity.myServer.sendResponse(device, requestId,

 BluetoothGatt.GATT_SUCCESS, offset,

 characteristic.getValue());

}

Bedauerlicherweise bietet Android – zumindest zum Zeit­

punkt der Drucklegung – keine Logik an, die das Senden der

in der Charakteristik befindlichen Informationen automati­

siert. Das Übertragen der Daten muss auf jeden Fall durch

Aufruf von sendResponse bewerkstelligt werden. Unterbleibt

dies, so erhält der Client keine Daten zurück.

Im Fall von Android-Clients wäre dieses Fehlverhalten be­

sonders kritisch, weil das Betriebssystem in einer Endlos­

schleife auf das Eingehen einer Antwort wartet und den on­

CharacteristicRead-Callback nicht abfeuert.

GATT definiert eine Gruppe von Elementen, die untereinander in 1:n-Beziehungen stehen (Bild 4)

62 1.2016  www.webundmobile.de

BluetoothMobile Development

Starten Sie das System sodann auf Ihrem Zieltelefon. Wenn

der Start der Applikation mit einer Fehlermeldung zu inkom­

patibler Hardware quittiert wird, so müssen Sie ein kompa­

tibles Telefon erwerben. Die im Abschnitt zu Android for X86

besprochene VM ist auf die Rolle des Clients beschränkt. Er­

freulicherweise ist das Motorola G der ersten Generation für

vergleichsweise kleines Geld zu haben. Unsere App funktio­

nierte auf einem Moto G mit Android 5.1 ohne jedes Problem.

Und jetzt auf dem Client
Damit können wir uns der Realisierung eines Clients zuwen­

den. Erstellen Sie ein zweites Projekt namens NMGGatt­

Client, das die im vorigen Abschnitt beschriebenen Manifest-

Anpassungen analog erhält. Es darf als Zielsystem Android

4.4 bekommen.

Das Client-API steht auch auf früheren Versionen des Be­

triebssystems zur Verfügung. Leider gibt es in Android 4.3 ei­

nige Probleme und Bugs, die unter http://stackoverflow.com/

questions/17870189/android-4-3-bluetooth-low-energy-un

stable?rq=1 im Zusammenspiel mit Methoden zur Umgehung

präsentiert werden.

Das Programm enthält neben einer Liste der gefundenen

Geräte auch zwei Buttons, die das Lesen und Schreiben der

NMG-Charakteristik erlauben. OnCreate beginnt mit der Er­

zeugung der grundlegenden Bluetooth-Klassen und der hier

aus Platzgründen nicht abgedruckten Verdrahtung von But­

tons und Event Handlern:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myManager = (BluetoothManager)

 getSystemService(Context.BLUETOOTH_SERVICE);

 myAdapter = myManager.getAdapter();

 myHandler = new Handler();

 myGattCallback=new NMGGattCallback(this);

 ...

Für die Liste sind zwei globale Arrays erforderlich. Array

Nummer 1 enthält die Namen der Geräte, während die dazu­

gehörenden BluetoothDevice-Instanzen in einem separaten

Array landen. Die Korrelation zwischen den beiden Feldern

erfolgt über den Index nach dem Schema eins zu eins:

public class MainActivity extends AppCompatActivity

implements View.OnClickListener {

 public ArrayAdapter<String> listAdapter ;

 public LinkedList<BluetoothDevice> myList;

 ...

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 ...

 listView = (ListView) findViewById(R.id.listView);

 ArrayList<String> aList = new ArrayList<String>();

 listAdapter = new ArrayAdapter<String>(this,

 R.layout.nmgrow, aList);

 listView.setAdapter(listAdapter);

 myList=new LinkedList<BluetoothDevice>();

Android-Puristen wenden an dieser Stelle ein, dass die Ver­

wendung eines von Hand geschriebenen Adapters den Vor­

gaben von Googles Dokumentation eher entspricht. Für uns

ist dies insofern irrelevant, als wir Elemente nicht dynamisch

hinzufügen beziehungsweise entfernen wollen.

Suche nach einem anzusprechenden Server
Im nächsten Schritt müssen wir die Suche nach einem anzu­

sprechenden Server anstoßen. Hierzu ist folgen­

der Code erforderlich:

@Override

protected void onCreate(Bundle

savedInstanceState) {

 ...

 myScanCallback=new NMGScanCallback(this);

 scanDevices();

}

private void scanDevices()

{

 myHandler.postDelayed(new Runnable() {

 @Override

 public void run() {

 myAdapter.stopLeScan(myScanCallback);

 }

 }, 5000); //5 sec

 myAdapter.startLeScan(myScanCallback);

}

Die Suche nach Bluetooth-Hardware ist kein

stromsparender Prozess. Es ist im Interesse der

NMGGattClient hat die Charakteristik

erfolgreich ausgelesen (Bild 5)

Aktivierung: Bitte aktivieren Sie

Ihren BT-Transmitter (Bild 6)

63www.webundmobile.de  1.2016

Bluetooth Mobile Development

Beim Anklicken eines Elements der Liste kommt folgender

Code zum Einsatz:

listView.setOnItemClickListener(new

AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent,

 View view,

 int position, long id)

 {

 myGattConnection=myList.get(position).connectGatt

 (getApplicationContext(), false, myGattCallback);

 myGattConnection.discoverServices();

 }

});

Beim Erzeugen einer Instanz der GattConnection-Klasse ist

ein Verweis auf ein GattCallback zwingend erforderlich. Er

wird vom System über Änderungen im Verlauf des Suchpro­

zesses informiert. Die im Konstruktor notwendige Zuweisung

der MainActivity-Instanz wird hier aus Platzgründen nicht

abgedruckt.

Im Fall eines erfolgreichen Verbindungsaufbaus zum End­

gerät wird eine Meldung in die Debuggerkonsole ausgewor­

fen. Zudem folgt ein Aufruf von discoverServices, der für das

Auflisten aller auf dem Gerät implementierten Charakteris­

tika zuständig ist:

@Override

public void onConnectionStateChange(BluetoothGatt

gatt, int status, int newState) {

 super.onConnectionStateChange(gatt, status, newState);

 if (newState == BluetoothProfile.STATE_CONNECTED) {

 Log.i("NMG", "Beginne Suche:" +

 gatt.discoverServices());

 } else if (newState == BluetoothProfile ▶

Vermeidung von Pollution sinnvoll, das Suchintervall so kurz

wie möglich zu halten. Martin Woolley – der Brite arbeitet bei

der Bluetooth SIG – zeigt bei Präsentationen Scandauern im

Bereich von einer Sekunde und bezeichnet diese als konserva­

tiv. Unser Wert von fünf Sekunden ist also mehr als defensiv.

Da der Bluetooth-Stack asynchron aufgebaut ist, müssen

wir die Entgegennahme der Ergebnisse in Form einer Liste­

ner-Klasse aufbauen. NMGScanCallback sieht so aus:

public class NMGScanCallback implements

BluetoothAdapter.LeScanCallback {

 MainActivity myAct;

 NMGScanCallback(MainActivity _act){

 super();

 myAct=_act;

 }

 @Override

 public void onLeScan(BluetoothDevice device, int rssi,

 byte[] scanRecord){

 final BluetoothDevice device1=device;

 myAct.runOnUiThread(new Runnable() {

 @Override

 public void run() {

 myAct.listAdapter.add(device1.getName() + "//" +

 device1.getAddress());

 myAct.listAdapter.notifyDataSetChanged();

 myAct.myList.add(device1);

 }

 });

 }

}

onLeScan wird beim Finden eines neuen Geräts aufgerufen.

Wir speichern die zurückgegebenen Ergebnisse im von der

Liste verwendeten Array – der in rssi angelieferte Wert für die

Signalstärke wird hier nicht weiterverarbeitet.

public abstract class BluetoothGattServerCallback {

 public void onConnectionStateChange

 (BluetoothDevice device, int status,

 int newState) {}

 public void onServiceAdded(int status,

 BluetoothGattService service) {}

 public void onCharacteristicReadRequest

 (BluetoothDevice device, int requestId,

 int offset, BluetoothGattCharacteristic

 characteristic) {}

 public void onCharacteristicWriteRequest

 (BluetoothDevice device, int requestId,

 BluetoothGattCharacteristic characteristic,

 boolean preparedWrite, boolean

 responseNeeded, int offset, byte[] value) {}

 public void onDescriptorReadRequest

 (BluetoothDevice device, int requestId,

 int offset, BluetoothGattDescriptor

 descriptor) {}

 public void onDescriptorWriteRequest

 (BluetoothDevice device, int requestId,

 BluetoothGattDescriptor descriptor,

 boolean preparedWrite,

 boolean responseNeeded, int offset,

 byte[] value) {}

 public void onExecuteWrite(BluetoothDevice device,

 int requestId, boolean execute) {}

 public void onNotificationSent(BluetoothDevice

 device, int status) {}

 public void onMtuChanged(BluetoothDevice

 device, int mtu) {}

}

Listing 1: GattServerCallback

64 1.2016  www.webundmobile.de

BluetoothMobile Development

 .STATE_DISCONNECTED) {

 Log.i("NMG", "Gerät verloren");

 }

}

Aufgrund der immer größer werdenden Verbreitung von

Bluetooth-LE-Hardware besteht ein valides Risiko, dass un­

ser Scanner nicht kompatible Hardware ergreift und dort mit­

unter Schaden anrichtet. Wir umgehen dieses – zugegebe­

nermaßen geringe, aber didaktisch günstige – Risiko durch

den Vergleich der Services. Die Read- und Write-Buttons in

der GUI werden nur dann aktiviert, wenn wir einen passen­

den Dienst finden:

@Override

public void onServicesDiscovered(BluetoothGatt gatt, int

status) {

 super.onServicesDiscovered(gatt, status);

 List<BluetoothGattService> myServices=

 gatt.getServices();

 for (BluetoothGattService gattService : myServices) {

 String uuid = gattService.getUuid().toString();

 if(uuid.compareTo

 ("abcbe138-a00c-6b8e-7d44-4b63a80170c3")==0)

 {//NMG-Dienst gefunden, GUI aktivieren

 myAct.runOnUiThread(new Runnable() {

 @Override

 public void run() {

 ...

 }

 });

...

Im Fall des Anklickens des Read-Buttons müssen wir mit der

Beschaffung der Charaktistik beginnen. Es handelt sich da­

bei um einen asynchronen Prozess. Der Event Handler be­

schafft einen Verweis auf das Charakteristik-Objekt, um da­

mit einen Lesebefehl abzusetzen:

@Override

public void onClick(View v)

{

 if(v==myReadBtn) {

 BluetoothGattService myGS=

 myGattConnection.getService(UUID.fromString

 ("abcbe138-a00c-6b8e-7d44-4b63a80170c3"));

 BluetoothGattCharacteristic myChara=

 myGS.getCharacteristic(UUID.fromString

 ("0acea172-2a76-69a7-4e49-302ed371f6a8"));

 myGattConnection.setCharacteristicNotification

 (myChara,true);

 if(myGattConnection.readCharacteristic(myChara)==

 true) {

 TextView myView = (TextView) findViewById

 (R.id.textView);

 myView.setText("Leseprozess beginnt");

 }

 Else

 {

 TextView myView = (TextView) findViewById

 (R.id.textView);

 myView.setText("Start des Leseprozesses scheitert");

 }

}

Nach dem Abarbeiten des Leseprozesses folgt ein Aufruf von

onCharacteristicRead. Die Methode liest die vom Server an­

gelieferten Daten ein, um danach die Benutzerschnittstelle zu

aktualisieren:

@Override

public void onCharacteristicRead(BluetoothGatt gatt,

final BluetoothGattCharacteristic characteristic,

int status)

{

 super.onCharacteristicRead(gatt, characteristic,

 status);

 myAct.runOnUiThread(new Runnable() {

 @Override

 public void run()

 {

 TextView myView=(TextView)myAct.findViewById

 (R.id.textView);

 myView.setText(characteristic.getStringValue(0));

 }

 });

}

Damit ist die App einsatzbereit. Schicken Sie den Client in

die VM oder auf ein Telefon mit Android 4.4 und führen Sie

Android-x86 stellt keine großen Ansprüche an die Hardware (Bild 7)

65www.webundmobile.de  1.2016

Bluetooth Mobile Development

 Terminiere!", Toast.LENGTH_SHORT).show();

 finish();

 }

 }

}

Führen Sie NMGGattClient anschließend bei ausgeschalte­

tem Bluetooth-Transmitter aus, um sich am in Bild 6 gezeig­

ten Prompt zu erfreuen.

Hilfreiches für Entwickler
Der von Google angebotene Emulator unterstützt Bluetooth

LE nicht. Die Einschränkungen lassen das Finden kompatib­

ler Hardware in einen veritablen Spießrutenlauf ausarten.

Wenn Sie ein als Host agierendes Telefon besitzen und auf

der Suche nach einem Client sind, so können Sie auf eine VM

zurückgreifen.

Als Funkmodul kommt dabei ein Bluetooth-4.0-USB-Stick

zum Einsatz. Wer in Bezug auf Kompatibilität auf Nummer si­

cher gehen möchte, bestellt den in Entwicklerkreisen allge­

mein sehr populären BTA8000 von Cirago. Da die Anbindung

durch den BlueZ BLE Stack für Linux erfolgt, funktionieren

auch andere damit kompatible Dongles in der Regel problem­

los. Der Autor nutzte einen handelsüblichen Dongle vom Typ

Connect IT BT403 auf Basis des Harmony-Chipsatzes.

VirtualBox und USB-Supportpaket
Laden Sie im nächsten Schritt die aktuellste Version von Vir­

tualBox herunter. Das USB-Supportpaket ist für das Freige­

ben des Dongles erforderlich und muss ebenfalls auf die Ma­

schine wandern. Der Autor hat für diesen Artikel ein speziel­

les Image kompiliert, in dem zwecks Erhöhung der Kompati­

bilität mit diversen Dongles einige Sicherheitschecks im

BTLE-Stack deaktiviert sind – laden Sie die rund 1,7 GByte

große Datei unter www.tamoggemon.com/test/android_x86_

btnmg2015.iso herunter.

Erzeugen Sie eine neue virtuelle Maschine mit den in Bild 7

gezeigten Einstellungen. Nach dem Start der VM wählen

Ports: Die von adb benötigten Ports müssen mit dem Host

verbunden werden (Bild 8)

einen Scan durch. Nach dem Anklicken des Zielgeräts folgt

ein Tap auf den Lesen-Button. Bild 5 zeigt das Resultat.

Aktivieren Sie den Funk
User schalten das Bluetoothmodul ihres Telefons gern aus,

um Energie zu sparen. Dass die dabei zu erzielenden Erspar­

nisse normalerweise nicht signifikant sind, ist ein Thema für

sich. Für uns als Entwickler ist die Situation nur insofern re­

levant, als der User bei Bedarf zum Einschalten des Transmit­

ters aufgefordert werden muss.

Android sieht hierfür einen Standarddialog vor, der sich

durch folgendes Codesnippet anwerfen lässt:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 myManager = (BluetoothManager)

 getSystemService(Context.BLUETOOTH_SERVICE);

 myAdapter = myManager.getAdapter();

 ...

 if(!myAdapter.isEnabled())

 {

 Intent enableBtIntent = new Intent

 (BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent, 232);

 }

 ...

Zwecks Vermeidung undefinierter Betriebszustände aktiviert

unser Codebeispiel den Scanprozess nur dann, wenn der

Transmitter des Telefons aktiv ist:

protected void onCreate(Bundle savedInstanceState) {

 ...

 if(myAdapter.isEnabled())

 {

 myScanCallback=new NMGScanCallback(this);

 scanDevices();

 }

}

Die als Host auftretende Activity kann über Erfolg bezie­

hungsweise Misserfolg der Aktivierung informiert werden.

Im Fall unseres Beispiels ist dazu folgender Code notwendig,

der den Suchprozess bei erfolgreicher Aktivierung abermals

anwirft:

@Override

protected void onActivityResult(int requestCode,

int resultCode, Intent data) {

 if(requestCode == 232) {

 if (resultCode == RESULT_OK) {

 myScanCallback = new NMGScanCallback(this);

 scanDevices();

 } else {

 Toast.makeText(this, "Aktivierung verweigert.

▶

66 1.2016  www.webundmobile.de

BluetoothMobile Development

Sie die Option Live CD. Die Installation erfolgt wie bei ande­

ren unixoiden Betriebssystemen. Achten Sie darauf, die .iso-

Datei nach der Installation aus der VM zu entfernen.

Während des rund zwei Minuten dauernden Bootprozesses

können Sie die Eigenschaften der VM öffnen. In der Rubrik

USB legen Sie durch Anklicken des Plus-Symbols einen neu­

en USB Device Filter an, der den USB-Dongle in Richtung der

virtuellen Maschine weiterleitet. Ebendort müssen Sie die

Netzwerkkarte konfigurieren. Klicken Sie auf Port Forwar­

ding und richten Sie die in Bild 8 gezeigten Verdrahtungen ein.

Da das Betriebssystem keine VirtualBox-Erweiterungen

mitbringt, müssen Sie die Mausintegration im Menü unter

Machine und Disable Mouse Integration deaktivieren. Ab

diesem Zeitpunkt ergreift die VM nach dem Anklicken Maus

und Tastatur, die sich über die Host-Taste (normalerweise

[Right Ctrl]) zurückerobern lassen.

Arbeiten Sie im nächsten Schritt den Konfigurationsassis­

tenten ab, um das Tablet zu aktivieren. Bei erfolgreicher In­

stallation lässt sich Bluetooth in den Einstellungen aktivieren;

ein echtes Telefon kann die VM dann wie ein normales

Smartphone finden. Aktivieren Sie zudem unter Developer

Options die Möglichkeit zum Debugging per USB.

In VirtualBox lebende Android-Instanzen verhalten sich

wie normale Unix-Betriebssysteme. Drücken Sie die Tasten­

kombination [Alt F1], um in die Konsole zu wechseln – die

Eingabe von adb tcpip 5555 sorgt dafür, dass der in der VM

lebende adb Verbindungen per TCP/IP entgegennimmt.

Auf Seiten des Hosts ist danach die Eingabe folgendes Be­

fehls notwendig, um die virtuelle Maschine als per adb an­

sprechbares Gerät einzubinden.

tamhan@TAMHAN14:/sdk/platform-tools$

./adb connect localhost:5555

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

connected to localhost:5555

Im Moment sind unsere Beispiele nicht sonderlich

interaktiv: Das Auslesen von am Server veröffent­

lichten Charakteristika mag für Sensoren ausrei­

chen, geht für komplexere Aufgaben aber nicht

weit genug.

Interaktivität
Wesentlich interessanter wird die Situation durch

das Herausschreiben von Werten, die von NMG­

GattServer entgegengenommen werden können.

Dazu muss die in NMGGattServer erfolgende De­

klaration der Charakteristik Schreibrechte bein­

halten. Adaptieren Sie MainActivity.java, um die

zusätzlichen Flags per OR in die Parameter des

Konstruktors zu schreiben:

BluetoothGattService s = new

BluetoothGattService

(NMGConstants.ServiceUUID,

BluetoothGattService.SERVICE_TYPE_PRIMARY);

myCharacteristic = new BluetoothGattCharacteristic

(NMGConstants.CharacteristicUUID,

BluetoothGattCharacteristic.PROPERTY_READ |

BluetoothGattCharacteristic.PROPERTY_WRITE,

BluetoothGattCharacteristic.PERMISSION_READ|

BluetoothGattCharacteristic.PERMISSION_WRITE);

myCharacteristic.setValue("NMG Test");

s.addCharacteristic(myCharacteristic);

myServer.addService(s);

GATT kennt mehrere Schreiboperationen. Neben einem nor­

malen Schreibvorgang mit Rückmeldung gibt es auch Be­

fehlsvariationen, die eine Signatur oder auch eine verschlüs­

selte Verbindung voraussetzen. Für besonders energiever­

brauchskritische Situationen bietet das Protokoll eine Varian­

te an, bei der geschriebene Daten vom Empfänger nicht quit­

tiert werden.

Wir beschränken uns hier aus Bequemlichkeitsgründen auf

normale Writes. In NMGGattServerObserver müssen wir vom

Client eingehende Werte entgegennehmen. Wie beim Lesen

ist auch hier Handarbeit vom Entwickler notwendig:

@Override

public void onCharacteristicWriteRequest

(BluetoothDevice device, int requestId,

BluetoothGattCharacteristic characteristic, boolean

preparedWrite, boolean responseNeeded, int offset,

byte[] value) {

 updateView("Schreibrequest ist eingegangen");

 super.onCharacteristicWriteRequest(device,

 requestId, characteristic, preparedWrite,

 responseNeeded, offset, value);

 characteristic.setValue(value);

 myActivity.myServer.sendResponse(device, requestId,

Der Server nimmt den Schreibbefehl

entgegen (Bild 9)

Textbox: Die neuen Informationen

scheinen in der Textbox des Clients

auf (Bild 10)

67www.webundmobile.de  1.2016

Bluetooth Mobile Development

Tam Hanna
ist Autor, Trainer und Berater mit den

Schwerpunkten Webentwicklung und

Webtechnologien. Es lebt in der Slowakei und

leitet dort die Firma Tamoggemon Holding k.s.

Er bloggt sporadisch unter
www.tamoggemon.com

 BluetoothGatt.GATT_SUCCESS, offset,

 characteristic.getValue());

}

Unsere Methode beginnt damit, den Schreib-Request in der

Textbox anzukündigen. Im nächsten Schritt folgt ein Aufruf

der für das Setzen der Charakteristik notwendigen Funktion.

Die Daten wandern automatisch ins Betriebssystem, wo sie

von Clients abgeerntet werden können.

Die Anpassung von NMGGattClient beginnt im Event

Handler der Knöpfe: Das Drücken des Schreiben-Knopfs

führt zum Absetzen eines an den Server gerichteten Schreib­

befehls:

public void onClick(View v) {

 ...

 else if (v==myWriteBtn)

 {

 BluetoothGattService myGS=

 myGattConnection.getService(UUID.fromString

 ("abcbe138-a00c-6b8e-7d44-4b63a80170c3"));

 BluetoothGattCharacteristic myChara=

 myGS.getCharacteristic(UUID.fromString

 ("0acea172-2a76-69a7-4e49-302ed371f6a8"));

 myChara.setValue("Neuer Wert");

 myChara.setWriteType

 (BluetoothGattCharacteristic.WRITE_TYPE_DEFAULT);

 if(myGattConnection.writeCharacteristic(myChara)==

 true) {

 TextView myView = (TextView) findViewById

 (R.id.textView);

 myView.setText("Schreibprozess beginnt");

 }

 else

 {

 TextView myView = (TextView) findViewById

 (R.id.textView);

 myView.setText("Start des Schreibprozesses

 scheitert");

 }

 }

Damit ist die Arbeit am Schreib-Feature abgeschlossen. Star­

ten Sie die beiden Apps auf kompatibler Hardware und kli­

cken Sie auf den Schreiben- und danach auf den Lesen-But­

ton des Clients. Bild 9 und Bild 10 zeigen, wie die beiden Pro­

gramme erfolgreich interagieren.

Entfernungsmessung mit Bluetooth LE
Der Austausch von Daten per KV-Speicher ist reizvoll, deckt

aber nur einen Teil der Möglichkeiten von Bluetooth LE ab.

Androids BTLE-Stack liefert im Rahmen der Suche Informa­

tionen über die Signalstärke, die sich zur Indoor-Navigation

einsetzen lassen.

Bei der Arbeit mit Beacons gibt es zwei verbreitete Konzep­

te. Methode 1 nutzt das aus der Ortung von GSM-Telefonen

bekannte Verfahren der Dreieckspeilung – der Aufenthalts­

ort des Telefons lässt sich durch die drei von den Sendern ge­

zogenen Kreise bestimmen. Als Alternative dazu bietet sich

die Nutzung von Beacons mit sehr schwacher Sendeleistung

an. Wenn ein Telefon die vom Sender ausgehenden Signale

empfangen kann, so dürfte es in nächster Nähe sein.

In beiden Fällen gilt: Ein iBeacon ist ein Gerät, das perma­

nent Advertising Packets aussendet. Die Payload beginnt da­

bei stets mit der Bitsequenz 02 01 06 1A FF 4C 00 02 15: statt

06 sind im dritten Byte auch andere Flag-Kombinationen zu­

lässig. Darauf folgen 16 Bytes, die Apple als Proximity ID be­

zeichnet. Sie beschreibt den Betreiber des Beacons. Alle Tes­

co-Supermärkte würden sich bei normgerechter Implemen­

tierung ein- und dieselbe ID teilen. Die eigentliche Unter­

scheidung der Beacons erfolgt über vier Bytes, die in Major

und Minor unterteilt werden: Major würde dabei den indivi­

duellen Supermarkt beschreiben, während Minor den Stand­

ort des individuellen Beacons beschreibt.

Da Google die vom Hauptkonkurrenten Apple entwickel­

te Technologie in seinen Telefonen natürlich nicht unter­

stützt, hat sich die von Radius Networks entwickelte Android

Beacon Library als Quasistandard etabliert (https://altbea

con.github.io/android-beacon-library).

Dank Gradle erfolgt die Einbindung in eigene Projekte mit

minimalem Aufwand. Öffnen Sie die für das Modul App zu­

ständige Version der build.gradle-Datei und adaptieren Sie

das Feld dependencies:

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 testCompile 'junit:junit:4.12'

 compile 'com.android.support:appcompat-v7:23.0.1'

 compile 'com.android.support:design:23.0.1'

 compile 'org.altbeacon:android-beacon-library:2+'

}

Im Rahmen der nächsten Kompilation lädt Gradle die fehlen­

den Ressourcen automatisch aus dem Internet herunter. Als

Nächstes können Sie die unter https://altbeacon.github.io/

android-beacon-library/samples.html bereitgestellten An­

weisungen befolgen, um Ihre Applikation zur Kommunika­

tion mit Beacons zu befähigen.

An dieser Stelle sei noch eine Anmerkung zu einer Beson­

derheit der Bibliothek erlaubt. Radius begegnet der Vielzahl

der am Markt befindlichen Beaconformate mit einem kleinen

Kniff – die BeaconParser-Klasse nimmt einen Formatstring

entgegen, der die zu generierenden Pakete beschreibt.� ◾

68 1.2016  www.webundmobile.de

Battery Status APIMobile Development Serie

Der Siegeszug von mobilen Endgeräten hat für

Webentwickler zur Folge, dass man sich bei der

Entwicklung einer Webanwendung noch mehr Gedan-

ken machen muss als noch vor einigen Jahren.

Welche Auflösung steht zur Verfügung? Wie muss

die Oberfläche der Anwendung diesbezüglich ange-

passt werden? Ist der Nutzer online oder offline? Müs-

sen eventuell Daten gecacht oder mit dem Server syn-

chronisiert werden? Sollen standortbezogene Informa-

tionen in der Anwendung dargestellt werden, oder lie-

fert das verwendete Endgerät keine standortbezoge-

nen Daten?

Auf der einen Seite ist dadurch die Implementierung

von Webanwendungen komplexer geworden, auf der

anderen Seite bieten sich dem Entwickler bezüglich

Usability und User Experience eine ganze Reihe neu-

er Möglichkeiten.

Ein Web API, die diesbezüglich interessant ist, ist das soge-

nannte Battery Status API (www.w3.org/TR/battery-status).

Über dieses API hat man nämlich die Möglichkeit, auf Bat

terie- beziehungsweise Akkuinformationen des jeweiligen

Endgeräts zuzugreifen und somit etwa abhängig vom Lade-

status des Akkus die Anwendung entsprechend anzupassen.

Status und Browsersupport
Das API befindet sich momentan im Status Candidate Recom-

mendation und wird in den aktuellen Versionen von Firefox,

In dieser Artikelreihe geht es dieses Mal um das Battery Status API.

Blick in den API-Dschungel
Das Battery Status API

Chrome und Opera unterstützt. Der Internet Explorer, dessen

Nachfolger Edge sowie Safari bieten momentan noch keine

Unterstützung dafür an (Bild 1).

Das API definiert ein neues Interface, das Interface Batte-

ryManager, über das der Zugriff auf verschiedene Akkuinfor-

mationen möglich ist. Zugriff auf eine Objektinstanz vom Typ

BatteryManager erhält man über die (ebenfalls neue) Metho-

de getBattery() des navigator-Objekts.

Um zu überprüfen, ob der jeweilige Browser das Battery

Status API unterstützt oder nicht, reicht es daher wie in Lis-

ting 1 gezeigt aus, zu prüfen, ob das navigator-Objekt über die

if (navigator.getBattery) {

 // Battery Status API unterstützt

} else {

 // Battery Status API nicht unterstützt

}

// Alternativ dazu kann folgender Code genutzt werden:

if ('getBattery' in navigator) {

 // Battery Status API unterstützt

} else {

 // Battery Status API nicht unterstützt

}

Listing 1: Browsersupport für das Battery Status API prüfen

Browserunterstützung: Derzeit wird das Battery Status API noch nicht von allen größeren Browsern unterstützt (Bild 1)

69www.webundmobile.de  1.2016

Battery Status API Mobile Development

Methode getBattery() verfügt (übrigens sahen

ältere Versionen des API vor, den BatteryMana-

ger über die Eigenschaft battery am navigator-

Objekt zur Verfügung zu stellen. Auch wenn

diese Information in vielen Online-Tutorials zu

finden ist, handelt es sich hierbei um eine ver-

altete Version des API).

Verwendung des API
Das BatteryManager-Interface stellt vier Eigen-

schaften bereit. Die Eigenschaft charging (vom

Typ boolean) gibt Auskunft darüber, ob die Bat-

terie momentan aufgeladen wird oder nicht.

Über die Eigenschaft chargingTime erhält man

eine Zeitangabe (Angabe erfolgt in Sekunden),

wie lange es dauert, bis die Batterie komplett

aufgeladen ist. Für den Fall, dass die Batterie

bereits komplett aufgeladen ist, hat diese Ei-

genschaft den Wert 0.

Wird die Batterie momentan nicht aufgela-

den, hat die Eigenschaft dagegen den Wert In-

finity. Analog zu chargingTime gibt die Eigen-

schaft dischargingTime die Zeit an (ebenfalls in

Sekunden), die es dauert, bis die Batterie voll-

ständig entladen ist (wird die Batterie momen-

tan geladen, hat dischargingTime den Wert Infinity). Zu gu-

ter Letzt gibt die Eigenschaft level den Batteriestand als

Fließkommazahl zwischen 0 (nicht geladen) und 1 (vollstän-

dig geladen) an.

Tabelle 2: Die verschiedenen Ereignisse rund um den Akkuladestand

Event Beschreibung

chargingchange Wird ausgelöst, wenn das Endgerät seinen Ladestatus ändert

levelchange Wird ausgelöst, wenn sich der Ladestand ändert

charging­
timechange

Wird ausgelöst, wenn sich die Zeit ändert, die nötig ist, bis der Akku
den vollen Ladestatus erreicht hat

dischargingtime­
change

Wird ausgelöst, wenn sich die Zeit ändert, die nötig ist, bis der Akku
leer ist

<!DOCTYPE html>

<html>

<head lang="en">

 <meta charset="UTF-8">

 <title>Beispiel</title>

 <link rel="stylesheet" href="styles/main.css"

 type="text/css">

</head>

<body id="battery-status" class="battery-charge">

<table>

 <tr>

 <th>Lädt:</th>

 <td id="charge"></td>

 </tr>

 <tr>

 <th>Ladezeit:</th>

 <td id="charging-time"></td>

 </tr>

 <tr>

 <th>Verbleibende Zeit:</th>

 <td id="discharging-time"></td>

 </tr>

 <tr>

 <th>Batteriestatus:</th>

 <td id="battery-level"></td>

 </tr>

</table>

<script src="scripts/main.js"></script>

</body>

</html>

// Inhalt der Datei main.js

if (navigator.getBattery) {

 function displayBatteryStatus(battery) {

 document.getElementById('charge').innerHTML =

 (battery.charging ? 'Ja' : 'Nein');

 document.getElementById('charging-time').innerHTML

 = battery.chargingTime;

 document.getElementById

 ('discharging-time').innerHTML =

 battery.dischargingTime;

 document.getElementById

 ('battery-level').innerHTML = battery.level;

 }

 navigator.getBattery().then(function (battery)

 {

 displayBatteryStatus(battery);

 });

}

Listing 2: Verwenden des Battery Status API

Tabelle 1: Die verschiedenen Eigenschaften von BatteryManager

Eigenschaft Beschreibung

charging Gibt an, ob der Akku geladen wird oder nicht

chargingTime Gibt die Zeit an, die nötig ist, bis der Akku vollständig geladen ist

dischargingTime Gibt die Zeit an, die nötig ist, bis der Akku vollständig entladen ist

level Gibt den Akkuladestand als Fließkommazahl zwischen 0 (nicht
geladen) und 1 (vollständig geladen) an

▶

70 1.2016  www.webundmobile.de

Battery Status APIMobile Development Serie

Ein einfaches Beispiel für die Verwendung des API finden

Sie in Listing 2. Wie Sie sehen, liefert die Methode getBatte-

ry() nicht direkt ein BatteryManager-Objekt zurück, sondern

ein Promise-Objekt. Ruft man auf diesem wiederum die Me-

thode then() auf, gelangt man in der übergebenen Callback-

Funktion schließlich an das gewünschte BatteryManager-Ob-

jekt (Tabelle 1).

Neben den genannten Eigenschaften können dem Battery-

Manager über die Methode addEventListener() Event-Liste-

ner für vier verschiedene Events zugewiesen werden: Das

Event chargingchange wird ausgelöst, wenn sich der Lade-

status ändert (das heißt, von ladend zu nicht ladend oder von

nicht ladend zu ladend), das Event levelchange, wenn sich

der Ladestand ändert, und die Events chargingtimechange

und dischargingtimechange, wenn sich die Zeit ändert, bis zu

der der Akku vollständig geladen (chargingtimechange) be-

ziehungsweise entladen (dischargingtimechange) ist. Tabel-

le 2 gibt einen Überblick über die verschiedenen Ereignisse

rund um den Akkuladestand. Ein Beispiel hierzu sehen Sie in

Listing 3.

CSS abhängig vom Batteriestand ändern
Je nachdem, mit welchem Endgerät man eine Webseite be-

sucht, kann es sein, dass die auf der Webseite verwendeten

Farben beziehungsweise deren Helligkeit Auswirkungen auf

die Akkulaufzeit des Endgeräts haben.

Dies ist zum Beispiel bei Endgeräten wie der Samsung-Ga-

laxy-Reihe der Fall, welche die sogenannte OLED-Technolo-

gie für ihr Display verwenden, da hier jedes einzelne Pixel

selbst leuchtet.

if (navigator.getBattery) {

 function displayBatteryStatus(battery) {

 document.getElementById('charge').innerHTML =

 (battery.charging ? 'Ja' : 'Nein');

 document.getElementById('charging-time').innerHTML

 = battery.chargingTime;

 document.getElementById

 ('discharging-time').innerHTML =

 battery.dischargingTime;

 document.getElementById

 ('battery-level').innerHTML = battery.level;

 }

 function chargingChangeHandler(event) {

 console.log('chargingchange');

 displayBatteryStatus(event.target);

 }

 function chargingTimeChangeHandler(event) {

 console.log('chargingtimechange');

 displayBatteryStatus(event.target);

 }

 function dischargingTimeChangeHandler(event) {

 console.log('dischargingtimechange');

 displayBatteryStatus(event.target);

 }

 function levelChangeHandler(event) {

 console.log('levelchange');

 displayBatteryStatus(event.target);

 }

 navigator.getBattery().then(function (battery) {

 displayBatteryStatus(battery);

 battery.addEventListener('chargingchange',

 chargingChangeHandler);

 battery.addEventListener('chargingtimechange',

 chargingTimeChangeHandler);

 battery.addEventListener('dischargingtimechange',

 dischargingTimeChangeHandler);

 battery.addEventListener('levelchange',

 levelChangeHandler);

 });

}

Listing 3: Über Event Listener kann auf verschiedene Ereignisse reagiert werden

Theme: Wird der Akku geladen oder ist er bereits vollständig

geladen, so wird das normale Theme verwendet (Bild 2)

Dunkel: Wird der Akku nicht geladen, wird das normale Theme

durch ein dunkleres Theme ersetzt (Bild 3)

71www.webundmobile.de  1.2016

Battery Status API Mobile Development

Bei Endgeräten, die die LCD-Technologie verwenden, wie

beispielsweise die verschiedenen iPhones, bei der unabhän-

gig von der Farbe einzelner Pixel immer der gesamte Hinter-

grund leuchtet, hat die Farbe der Pixel dagegen keinen Ein-

fluss auf die Akkulaufzeit.

Ein Anwendungsbeispiel für die Verwendung des Battery

Status API könnte es also sein, das Theme einer Webseite ab-

hängig vom Akkuladestands anzupassen (Bild 2): Ist der Ak-

ku noch ausreichend geladen, wird das normale Theme ver-

wendet. Liegt der Akkuladestand unterhalb eines bestimm-

ten Schwellenwerts, wird auf ein energiesparenderes Theme

gewechselt (Bild 3).

Listing 4 zeigt dazu ein Beispiel, wobei hier nicht abhängig

vom Akkuladestand zwischen den Themes gewechselt wird,

sondern abhängig davon, ob der Akku gerade geladen wird

oder nicht. Das Beispiel lässt sich sogar auf einem Laptop aus-

probieren: Trennen Sie diesen einfach vom Strom, und schon

sollte das Theme gewechselt werden (es kann allerdings

durchaus etwas länger dauern, bis das chargingchange-

Event ausgelöst wird).

Fazit
Das Battery Status API ermöglicht es Programmierern, auf

Akkuinformationen eines Endgeräts zuzugreifen. Das API ist

nicht komplex, trägt aber dazu bei, dass Webanwendungen

noch nutzerfreundlicher programmiert werden können. Ein

konkretes Beispiel wird in diesem Artikel gezeigt: Das CSS

des Layouts wird abhängig vom aktuellen Akkuladestand dy-

namisch angepasst. Momentan unterstützen die Browser

Firefox, Chrome und Opera das Battery Status API.� ◾

Philip Ackermann
arbeitet beim Fraunhofer-Institut für Ange-

wandte Informationstechnologie FIT an

Tools zum teilautomatisierten Testen von

Web Compliance und ist Autor zweier Fach

bücher über Java und JavaScript.

<!DOCTYPE html>

<html>

<head lang="en">

 <meta charset="UTF-8">

 <title>Beispiel</title>

 <link rel="stylesheet" href="https://

 maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/

 bootstrap.min.css">

 <link id="theme" rel="stylesheet"

 href="styles/default-theme.min.css">

</head>

<body id="battery-status" class="battery-charge">

 <div class="container">

 <ul class="nav nav-pills nav-stacked">

 Home

 <li class="active">Projects

 Services

 About Us

 Contact

 </div>

<script src="scripts/main.js"></script>

</body>

</html>

// Inhalt der Datei main.js

function init() {

 if (navigator.getBattery) {

 var normalTheme = 'default-theme.min.css';

 var darkTheme = 'dark-theme.min.css';

 function applyCSS(battery)

 {

 if (battery.charging) {

 document.getElementById('theme').href =

 'styles/' + normalTheme;

 }

 else {

 document.getElementById('theme').href =

 'styles/' + darkTheme;

 }

 }

 function chargingChangeHandler(event)

 {

 applyCSS(event.target);

 }

 navigator.getBattery().then(function (battery)

 {

 applyCSS(battery);

 battery.addEventListener('chargingchange',

 chargingChangeHandler);

 battery.addEventListener('levelchange',

 chargingChangeHandler);

 battery.addEventListener('chargingtimechange',

 chargingChangeHandler);

 battery.addEventListener

 ('dischargingtimechange',

 chargingChangeHandler);

 });

 }

}

document.addEventListener('DOMContentLoaded', init);

Listing 4: Das Bootstrap-Theme wird abhängig vom Akkuladestand angepasst

72 1.2016  www.webundmobile.de

iOSMOBILE DEVELOPMENT

Neben Controls sollen in der eigenen App noch zusätzli-

che grafische Elemente angezeigt werden? Das geht un-

ter iOS oder OS X mit dem Core Graphics API. Hierbei han-

delt es sich um eine Bibliothek von Funktionen, die auf der

Quartz-Engine des jeweiligen Betriebssystems aufsetzt.

Die Quartz-Engine ermöglicht das Rendering von 2D-Ele-

menten. Um mit Quartz arbeiten zu können, wird das ent-

sprechende API (Core Graphics) verwendet. Das Zeichnen

beginnt mit der Erstellung einer sogenannten Zeichenfläche,

dem Graphics Context. Auf dieser Zeichenfläche werden im

späteren Verlauf die gewünschten Elemente erzeugt. Neben

der Erzeugung von Grafiken ist es beispielsweise auch mög-

lich, auf Basis von Core Graphics ein PDF-Dokument zu er-

zeugen.

Vorbereitung
Vor dem Zeichnen von geometrischen Figuren muss erst ein-

mal ein Graphics Context erzeugt werden. Hierbei handelt es

sich um eine Fläche, auf der später die Figuren angezeigt

werden. Dieses Objekt wird in einer App mittels einer zusätz-

lichen Klasse erstellt.

Das Core Graphics API ist eine Schnittstelle zum

Zeichnen geometrischer Elemente in einer View.

Grafiken erzeugen
IOS: CORE GRAPHICS API

In einem Projekt vom Typ Single View Application wird

hierzu eine neue Klasse, die von der Klasse UIView abgelei-

tet wird, angelegt. Im Projekt kann eine entsprechende Klas-

se via File, New File, iOS und Source und dort mittels Aus-

wahl der Vorlage Cocoa Touch Class generiert werden.

Bei der Anlage der neuen Klasse hilft der entsprechende

Dialog von Xcode. Hier muss man zuerst einen passenden

Namen wählen und als Subclass-Typ UIView wählen. Im Bei-

spiel wird Swift als Sprache verwendet. Nach Anlage der

func drawLine() {

 let ctx =

 UIGraphicsGetCurrentContext()

 CGContextBeginPath(ctx)

 CGContextMoveToPoint(ctx, 30.0

 , 20.0)

 CGContextAddLineToPoint(ctx, 250.0, 20.0)

 CGContextSetLineWidth(ctx, 5)

 CGContextClosePath(ctx)

 CGContextStrokePath(ctx)

}

Listing 2: Eine Linie zeichnen

import UIKit

class uiView: UIView {

 override init(frame: CGRect) {

 super.init(frame: frame)

 }

 required init?(coder

 aDecoder: NSCoder) {

 fatalError("init(coder:) wurde nicht

 implementiert!")

 }

 override func drawRect(rect:

 CGRect) {

 }

//Quellcode entfernt ...

}

Listing 1: Klasse vorbereiten

Fo
to

: S
hu

tt
er

st
oc

k
/

Si
ar

he
i T

ol
ak

73www.webundmobile.de  1.2016

iOS MOBILE DEVELOPMENT

neuen Klasse muss diese um

einige Methoden erweitert

werden, welche für die Vor-

bereitung der Zeichenfläche

notwendig sind. Überschrie-

ben werden unter anderem

die Methoden init und draw­

Rect (Listing 1).

Im ersten Schritt wird der

Initialisierer der Klasse, die

Methode init, aufgerufen.

Diese Methode erwartet ein

Objekt vom Typ CGRect.

Dieses Objekt wird später

als Zeichenfläche verwen-

det. Im Initialisierer wird

das Objekt vom Typ CGRect

übernommen und im weiteren Verlauf der überschriebenen

Methode drawRect als Parameter übergeben.

Erst innerhalb von drawRect werden dann im nächsten

Schritt verschiedene Methoden zum Zeichnen aufgerufen. Es

gibt noch einen weiteren Initialisierer im Code, der mit dem

Schlüsselwort required gekennzeichnet ist.

Durch die Verwendung wird sichergestellt, dass auch die-

ser Initialisierer aufgerufen wird. Im Fall eines Fehlers wird

dann eine entsprechende Meldung ausgegeben.

Graphics Context und Line
Nach diesen Vorbereitungen ist man nicht mehr weit davon

entfernt, mit dem Zeichnen zu beginnen. Innerhalb der Me-

thode drawLine soll eine einfache gerade Linie gezeichnet

werden (Listing 2). Für das

Zeichnen wird, wie bereits

erwähnt, ein Graphics-Con-

text-Objekt benötigt. Des-

sen Anlage erfolgt durch ei-

nen Aufruf der Methode

UIGraphicsGetCurrentCon­

text.

Der Zeichenvorgang be-

ginnt durch Aufruf der Me-

thode CGContextBeginPath,

dieser Methode wird als Pa-

rameter das Graphics-Con-

text-Objekt ctx übergeben.

Eine Zeichenfläche für die

Ausgabe der Grafik wurde

damit festgelegt.

Anschließend muss bestimmt werden, wo in der View mit

dem Zeichnen begonnen werden soll. Hierzu wird die Me

thode CGContextMovieToPoint verwendet. Dieser Methode

werden neben dem Graphics Context noch die entsprechen-

den x- und y-Koordinaten übergeben, mit denen der Start-

punkt festgelegt wird. Das Zeichnen der Linie wird mit der

Methode CGContextAddLineToPoint durchgeführt. Dieser

Methode wird wieder das Graphics-Context-Objekt überge-

ben, und dazu die x- und y-Koordinaten, die den Endpunkt

der Linie angeben.

Es fehlt noch die Festlegung, mit welcher (Strich-)Stärke

die Linie gezeichnet werden soll. Dies wird durch Aufruf der

Methode CGContextSetLineWidth festgelegt. Als Parameter

werden hier das Graphics-Context-Objekt und ein Wert vom

Typ CGFloat übergeben.

Zum Abschluss werden dann die Methoden CGContext­

ClosePath und CGContextStrokePath aufgerufen. Beiden

Methoden wird als Parameter das Graphics-Context-Objekt

übergeben. Die Methode CGContextClosePath schließt den

Ausgabepfad, und CGContextStrokePath sorgt dafür, dass

die Linie dann gezeichnet wird (Bild 1). Das sind bereits die

wesentlichen Schritte, um zu zeichnen.

Rechteck
Die nächste Figur, die gezeichnet werden soll, ist ein Recht-

eck. Hierfür gibt es eine eigene Methode, sodass es nicht er-

forderlich ist, vier einzelne Linien zu zeichnen. In Listing 3 be-

ginnt die Erstellung der Zeichnung mit der Festlegung eines

Mittelpunkts. Die ersten Zeilen werden dazu verwendet, die

Position des zu zeichnenden Rechtecks sowie dessen Dimen-

sionen zu bestimmten. Anschließend wird ein Graphics-Con-

text-Objekt erzeugt. Das Zeichnen des Rechtecks beginnt mit

dem Aufruf der Methode CGContextAddRect.

Unter Berücksichtigung der (späteren) Position werden die

Höhe und die Breite des Rechtecks als Parameter der Metho-

de CGContextAddRect übergeben. Die Stärke der Linie des

Rechtecks wird, wie im letzten Beispiel, mit der Methode CG­

ContextSetLineWidth festgelegt. Außerdem wird noch die

Farbe festgelegt, in der der Rahmen des Rechtecks gezeich-

net wird. Hierzu wird die Methode CGContextSetStroke­

func drawRectangle() {

 let center = CGPointMake(

 self.frame.size.width / 2.0,

 self.frame.size.height / 2.0)

 let rectangleWidth:CGFloat = 150.0

 let rectangleHeight:CGFloat = 150.0

 let ctx =

 UIGraphicsGetCurrentContext()

 CGContextAddRect(ctx,

 CGRectMake(center.x - (0.5 *

 rectangleWidth), center.y – (0.5

 * rectangleHeight),

 rectangleWidth,

 rectangleHeight))

 CGContextSetLineWidth(ctx, 30)

 CGContextSetStrokeColorWithColor(

 ctx, UIColor.blueColor().CGColor)

 CGContextStrokePath(ctx)

}

Listing 3: Festlegung eines Mittelpunkts

Linie: Eine einfache Linie wird

gezeichnet (Bild 1)

Rechteck: Ein Rechteck wird

gezeichnet (Bild 2)

▶

74 1.2016  www.webundmobile.de

iOSMOBILE DEVELOPMENT

ein wenig mehr Quellcode erfordert. Sicherlich kennen Sie

den Reim »Punkt, Punkt, Komma, Strich, fertig ist das Mond-

gesicht«. Dieser Reim soll im letzten Beispiel einmal in Code

gegossen werden. Vorab sollte die Überlegung stehen, wel-

che Elemente zum Zeichnen des Objekts benötigt werden. Es

ist klar, dass neben einem Kreis als weiteres Element Linien

zur Darstellung verwendet werden (Listing 5).

Da für den Rand des Ge-

sichts ein Kreis gezeichnet

werden muss, wird im ers-

ten Schritt der Mittelpunkt

bestimmt. Hierzu wird aber-

mals die Methode CGPoint­

Make verwendet. Anschlie-

ßend wird das Graphics-

Context-Objekt erzeugt und

die Methoden CGContext­

BeginPath sowie CGCon­

textSetLineWidth werden

mit den jeweiligen Parame-

tern aufgerufen. Anschlie-

ßend werden, wie im vori-

gen Beispiel, die benötigten

Informationen ermittelt, um

den Kreis zeichnen zu kön-

nen, und mit einem Aufruf

von CGContextAddArc wird dieser dann gezeichnet.

Um die Augen, Nase sowie den Mund zu zeichnen, werden

dann jeweils im Wechsel die Methoden CGContextMovieTo­

Point, CGContextAddLineToPoint sowie CGContextSetLine­

Width mit den benötigten Koordinaten als Parameter aufge-

rufen. Mit dem Aufruf der Methode CGContextStrokePath

wird abschließend das Mondgesicht gezeichnet (Bild 4).

Fazit
Sind die entsprechenden Anweisungen zum Zeichnen sowie

die Verwendung des Graphics-Context-Objekts bekannt,

dann ist das Zeichnen von Figuren innerhalb von iOS- oder

auch OS-X-Apps kein Problem.

ColorWithColor aufgerufen und neben dem Graphics-Con-

text-Objekt noch die zu verwendende Farbe übergeben. Ab-

schließend wird zum Zeichnen des Objekts wieder die Me-

thode CGContextStrokePath aufgerufen und das Rechteck

wird nun angezeigt (Bild 2).

Auch das Zeichnen eines Kreises ist unter Verwendung der

entsprechenden Anweisungen nicht weiter schwierig. Hier-

bei müssen natürlich zusätzliche Methoden und Parameter

verwendet werden (Listing 4).

Um einen Kreis zu zeichnen, wird im ersten Schritt wieder

der Mittelpunkt mit der Methode CGPointMake bestimmt.

Als Nächstes wird ein Graphics-Context-Objekt erzeugt und

es wird die Methode CGContextBeginPath aufgerufen. Die

Stärke, in welcher der Kreis gezeichnet wird, wird wieder

durch einen Aufruf der Me-

thode CGContextSetLine­

Width festgelegt.

Mittels der zuvor angeleg-

ten Variablen center werden

nun der aktuelle x- und an-

schließend der y-Wert abge-

fragt. Außerdem wird der

Radius festgelegt sowie der

Endwinkel berechnet. Die

ermittelten Informationen

werden im Anschluss der

Methode CGContextAdd­

Arc übergeben. Gezeichnet

wird das Objekt abschlie-

ßend durch einen Aufruf der

Methode CGContextStroke­

Path (Bild 3).

Bisher wurden nur sehr

einfache geometrische Figuren gezeichnet. Es ist klar, dass

die Erstellung einer etwas aufwendigeren Zeichnung auch

Christian Bleske
ist Autor, Trainer und Entwickler mit dem

Schwerpunkt Client/Server und mobile

Technologien. Sein Arbeitsschwerpunkt liegt

auf Microsoft-Technologien.
cb.2000@hotmail.de

�� �Framework Reference
https://developer.apple.com

Links zum Thema

Kreis: Der gezeichnete Kreis

(Bild 3)

Gesicht: Das fertige Mond

gesicht (Bild 4)

func drawCircle() {

 let center = CGPointMake(

 self.frame.size.width / 2,

 self.frame.size.height / 2)

 let ctx =

 UIGraphicsGetCurrentContext()

 CGContextBeginPath(ctx)

 CGContextSetLineWidth(ctx, 20)

 let x:CGFloat = center.x

 let y:CGFloat = center.y

 let radius: CGFloat = 110.0

 let endAngle: CGFloat = CGFloat(2 *

 M_PI)

 CGContextAddArc(ctx, x, y, radius, 0,

 endAngle, 0)

 CGContextStrokePath(ctx)

}

Listing 4: Zeichnen eines Kreises

smart-data-developer.de  #smartddc    SmartdataDeveloperConference

Das Advisory Board der Smart Data Developer Conference:

X-Mas Special
bis 6. Januar 2016

bis zu

300,– EUR
sparen!

1011010111001101101101
101101011100110110

101101011100110110

• 18.04.2016 – Konferenz
• 19.04.2016 – Workshops
Novotel München City

Partner-Konferenz:Präsentiert von: Veranstalter:

Die SMART DATA Developer Conference
macht Softwareentwickler mit den Heraus-
forderungen von Big Data vertraut.

• �In den Konferenz-Sessions erlangen Sie Wissen zu
Speicherung, Analyse, Plattformen und Tools.

• �Die Workshops bieten intensives Training in den
Technologien Multi-Model-Database mit CQRS und
OrientDB, Microsoft Azure und Architektur sowie
Smart Development.

Robert Eichenseer,
Microsoft Corp.

Agnzieszka
Walorska,
Creative
Construction
Heroes GmbH

Stefan Papp,
Teradata
Operations Inc.

Michael Nolting,
Sevenval
Technologies
GmbH

Oliver B. Fischer,
E-Post
Development
GmbH

Sascha Dittmann,
Microsoft
Deutschland GmbH

Constantin Klein,
Freudenberg
IT SE & Co. KG

Konferenz-Programm: 18. April 2016

Programmänderung vorbehalten

	 10.00 Uhr	 Kaffeepause

	 12.30 Uhr 		 Mittagspause

	 15.30 Uhr	 Kaffeepause

Clouds in the Wind – Big und Smart Data in der Cloud und trotzdem beweglich • Michael Nolting
Smart und Big Data sind die Trendthemen heutzutage. Aber welche Technologie und welcher Anbieter sind für den speziellen
Anwendungsfall am besten geeignet? Die entwickelte Entscheidungsmatrix soll den Zuhörer mündig machen, die im Markt ver-
fügbaren Technologie-Stacks schnell zu vergleichen und die für den eigenen Anwendungsfall am besten geeigneten zu finden.

09.00 Uhr

10.30 Uhr

11.30 Uhr

13.30 Uhr

14.30 Uhr

16.00 Uhr

17.00 Uhr
bis
18.00 Uhr

Ist das Entity Framework wirklich langsam? JA! In dieser
Session werden wir uns ansehen, was das Entity Framework
langsam macht und was wir dagegen unternehmen können!

Smart
Data mit
.NET

Performance trotz Entity Framework
• André Krämer

Mit diesen beiden Open-Source-Bibliotheken ist der Zugriff
auf Datenquellen sowie ihre Analyse und Aggregation auf ein-
fache Weise möglich.

Smart
Data mit
.NET

Datenquellen mit F# Data und Deedle
• Stefan Lieser

This talk is going to get deep into real world scenarios using
Azure Machine Learning. Build from scratch a predictive model,
comparing algrorithms and adding custom modules.

Smart
Data mit
.NET

Looking for the meaning to our data
• Diego Poza

Die SQL Server Integration Services ermöglichen die Integra-
tion von Datenbanken in vorhandene IT-Landschaften. Die
Session behandelt Framework und Eigenheiten der SSIS.

Smart
Data mit
.NET

Datenpipeline-Komponenten für die SSIS
• Thomas Worm

Bei interaktiven Datenabfragen schwächeln die meisten Big
Data Technologien. Diese Session zeigt die wichtigsten Grund-
lagen der In-Memory Technologie anhand von Codebeispielen.

Smart
Data mit
.NET

Interaktive Analysen mit Apache Spark
• Olivia Klose und Sascha Dittmann

Ein Tiefflug über den Cortana Analytics Stack: Wie spielen die
einzelnen Dienste, wie EventHub, Stream Analytics, Azure
Data Lake, Azure Machine Learning und PowerBI zusammen?

Smart
Data mit
.NET

Hey Cortana - let’s talk about Analytics!
• Olivia Klose und Marcel Tilly

Big Data ohne Datenqualität wird chaotisch und bedeutungs-
los. Die Session bietet einen Überblick bekannter Standards,
sowie deren Unterstützung durch Sprachen, APIs etc.

Best
Practices

Datenqualität für Entwickler
• Werner Keil

Fokus der Session ist das Streaming Analytics Framework
und dessen containerized Micro-Service-Architektur. Gezeigt
werden Design Patterns und Use Cases.

Best
Practices

Das Analytics Framework BRAIN Reflex
• Rupert Steffner und Jan Lendholt

Big Data ist nicht gleich Smart Data. Interaktive und skalier-
bare Datenvisualisierung ist der nächste Schritt, um Daten für
den Nutzer nutzerfreundlich aufzubereiten.

Mensch &
Maschine

The UX of Data: Responsive Visualisierung
• Peter Rozek

Die Session stellt die Multi-Model-Graphen-Datenbank Ori-
entDB mit node.js vor. Sie kann in Documents wie in Graphen
speichern, was die Anwendung im Alltag sehr vereinfacht.

Best
Practices

Daten entlang der Seidenstraße
• Jan Fellien

Gewinnen Sie in dieser Session einen Überblick über die
Microsoft Cloud Data Platform und die Möglichkeiten beider
Bereiche „Data & Storage“ und „Analytics“.

Best
Practices

Mehr als SQL Server in the Cloud
• Constantin Klein

Daten sind nur so gut, wie dem Betrachter verständlich. Dieser
Vortrag liefert psychologische Hintergründe und einen struktu-
rierten Weg, wie Daten optimal aufbereitet werden können.

Mensch &
Maschine

Ergonomische Datendarstellung
• Daniel Greitens

Workshops: 19. April 2016

1011010111001101101101
101101011100110110

Das Buzzword Big Data ist aktuell in
aller Munde. Soziale Netzwerke, Senso-
ren, das Internet der Dinge und Server-
Logs generieren massenhaft Daten in
den verschiedensten Formaten. Doch es
ist nicht damit getan, Daten zu sammeln.
Der richtige Einsatz und eine smarte
Verarbeitung machen aus Datenmengen
erst Smart Data. Und genau hier liegt
ein großes Potenzial: Unternehmen ver-
zeichnen geringere Kosten und mehr
Umsatz durch den Einsatz von Big-Data-
Technologien. Diese bergen jedoch auch
einige Herausforderungen. Datenschutz
und -sicherheit sind nur ein Aspekt.
Viele Unternehmen kämpfen noch mit
mangelndem technischen und fachli-
chen Know-how.

Genau hier setzt die SMART DATA Devel-
oper Conference an. Sie bietet technisches
und fachliches Know-how für Software-
entwickler, die einen entscheidenden Teil
in Big Data Projekten beitragen.

Die Referenten der Smart Data Developer Conference (u.a.):

Rupert Steffner,
Otto (GmbH & Co KG)

Thomas Worm,
DATEV eG

Marcel Tilly,
Microsoft Research

Peter Rozek,
ecx.io
germany GmbH

Alexander Schulze,
Innotrade GmbH

Diego Poza,
Auth0 Inc.

André Krämer,
Software, Training &
Consulting

Jan-Hendrik Lendholt,
Otto (GmbH & Co KG)

Michael Nolting,
Sevenval Technologies
GmbH

Stefan Lieser,
CCD School

Jan Fellien,
devCrowd GmbH

Daniel Greitens,
MAXIMAGO GmbH

Constantin Klein,
Freudenberg
IT SE & Co. KG

Werner Keil,
Creative Arts &
Technologies

Olivia Klose,
Microsoft Deutschland
GmbH

Smart Data vs. Big Data

Jan Fellien� Uhrzeit:
� 09.00 – 18.00 Uhr

Alexander Schulze� Uhrzeit:
� 09.00 – 18.00 Uhr

Lange habe ich nach einer guten Lö-
sung für eine Datenbank gesucht, die
sich ins CQRS Umfeld gut einfügt. Mit
der OrientDB scheint die Suche ein
Ende zu haben. Hiermit können Gra-
phen und Documents gleichermaßen
gespeichert (sprich ein Event Store) und
die Read Models passgenau zu den An-
forderungen abgelegt werden.

Der Workshop führt Sie zunächst in das
CQRS-Paradigma ein und leitet Sie be-
hutsam hinüber in die Datenspeiche-
rung mit node.js und OrientDB.

Big-Data-Analysen erzeugen Wissen als
Basis für smarte Maschinen, für Vorher-
sagen, für Empfehlungs- und Assistenz-
Systeme. Doch smarte Technologien
verbessern nicht nur Software als Ergeb-
nis, sondern auch deren Entwicklung.

Dieser Workshop stellt Modelle, Abfra-
gen und Regeln semantischer Ontolo-
gien mit OWL2, SPARQL und SWRL vor.
Wir erläutern Machine-Learning, BPMN
mit Micro-Services in der Cloud und wie
in Enapso intelligente Agenten Anforde-
rungen und Wissen verbinden, als Assi-
stenten zur Softwareentwicklung.

Work-
shop 1

CQRS und Multi-Model-DB
– ein Herz und eine Seele

Work-
shop 2

Smart Development mit
Enapso

Geplant (lassen Sie sich vormerken):

Work-
shop 3

Smart Data with
Microsoft Azure

Work-
shop 4

Eine smarte Architektur
für Big Data

78 1.2016  www.webundmobile.de

SwiftMobile Development

Apple stellt gerne die sehr gute Performance ihrer neuen

Programmiersprache Swift als einen der Hauptvorteile

im Vergleich zu Objective-C heraus. Das bezieht sich nicht

nur auf Merkmale der Sprache selbst wie beispielsweise die

durchgängige Typsicherheit, mit der in Swift beispielsweise

immer klar und eindeutig definiert wird, welche Typen von

Objekten ein Array enthalten darf.

Auch der Compiler wird in sehr großem Umfang von App-

le gepflegt und stets optimiert, um auch das letzte Quäntchen

Leistung aus dem eigenen Quellcode zu kitzeln. Viele dieser

Optimierungen erhalten Entwickler bereits automatisch und

»out of the Box«, indem sie einfach Swift in ihren App-Pro-

jekten einsetzen. An mancher Stelle können aber auch wir

Entwickler nachhelfen und die Performance unseres Codes

noch weiter optimieren.

Reference Counting
Jeder Apple-Entwickler dürfte mit der Technik des Reference

Counting vertraut sein, ist es doch die Grundlage der Spei-

cherverwaltung in der Entwicklung für OS X, iOS, watchOS

und tvOS; ganz gleich ob man nun mit Objective-C oder Swift

arbeitet. Bei diesem Referenzzählen werden ganz konkret die

aktiven Verweise auf ein Objekt im Speicher gezählt. Gibt es

keine Verweise mehr auf ein solches Objekt, wird es nicht

mehr benötigt und der entsprechende Speicher freigegeben.

Ein einfaches Beispiel dazu zeigt der nachfolgende Code:

var firstReference: MyClass? = MyClass()

var secondReference: MyClass? = firstReference

firstReference = nil

secondReference = nil

Während zu Beginn der OS X- und iOS-Entwicklung die Ent-

wickler noch selbst dafür Sorge tragen mussten, den Refe-

renzzähler mit Hilfe von retain- und release-Aufrufen auf dem

aktuellen Stand zu halten, hat Apple diesen Aspekt bereits

vor Jahren mit der Einführung des sogenannten Automatic

Reference Counting (kurz ARC) deutlich vereinfacht.

Die retain- und release-Methoden waren damit Geschich-

te und der Compiler kümmert sich selbsttätig um das Ausfüh-

ren der entsprechenden Methoden zum Erhöhen beziehungs-

weise Verringern eines Referenzzählers. So weit, so gut.

In Swift werden nur dann Referenzen auf ein Objekt ange-

wendet, wenn es sich bei dem entsprechenden Objekt um ei-

nes vom Typ einer Klasse handelt. Klassen sind in Swift soge-

nannte Reference Types und werden daher über Verweise im

Speicher referenziert. Bei Typen, die als Structure oder Enu-

meration definiert werden, handelt es sich um Value Types.

Auch Swift-Code kann in Sachen Performance noch weiter optimiert werden.

Code optimieren
Swift-Performance optimieren

Objekte von Value Types werden immer kopiert, sobald sie

einer anderen Variable oder Konstanten oder einer Funktion

übergeben werden, wodurch niemals mehrere Referenzen

auf ein und dasselbe Objekt verweisen. Dieses grundlegen-

de Verhalten von Value Types und Reference Types in Swift

ist ausschlaggebend für alle Optimierungen, die wir im Be-

reich des Reference Counting unserem Swift-Code angedei-

hen lassen können.

Klassen ohne Reference Types
Als Apple-Entwickler wissen wir: Wir arbeiten objektorien-

tiert und damit primär mit Klassen. Die Frameworks von App-

le bestehen hauptsächlich aus verschiedensten Klassen, die

wir entweder direkt verwenden oder mittels eigener Subklas-

sen um eigene Funktionen erweitern; der typische Alltag ei-

nes jeden Apple-Entwicklers.

Oftmals denkt man möglicherweise schon gar nicht mehr

darüber nach, ob man einen bestimmten Typ nicht auch ein-

fach als Structure statt als Klasse definieren könnte. Klassen

sind nun einmal der hervorstechendste und die am häufigs-

ten verwendete Art von Typ, wenn wir Apps für OS X, iOS,

watchOS oder tvOS entwickeln.

Wie wir aber wissen, sind Klassen Reference Types. Die

Verwendung einer Klasse bringt somit immer die Notwendig-

keit der automatischen Speicherverwaltung mittels ARC mit

sich. Auch wenn wir dazu selbst nicht direkt Code schreiben

müssen, der sich um diese Speicherverwaltung kümmert, so

findet diese intern doch jedes Mal statt. Und sie frisst Ressour-

cen. Ein kleines Beispiel soll das verdeutlichen.

Nehmen wir einmal eine Klasse, die selbst über keinerlei

Reference Types verfügt, sondern nur Variablen und Kon

stanten in Form von Value Types definiert (zum Beispiel Int,

Float, String et cetera). Und nehmen wir weiterhin an, wir er-

stellen an einer anderen Stelle ein Array, welches Objekte

eben jener Klasse enthält.

Zum Auslesen dieses Arrays kann dann die bekannte for-

in-Schleife verwendet werden, um nach und nach auf alle

Verweise der Objekte innerhalb des Arrays zuzugreifen. Lis-

ting 1 stellt diese Konstellation in vereinfachter Form beispiel-

haft dar.

Das ist Code, wie wir ihn in der Regel alle kennen und re-

gelmäßig selbst schreiben und anwenden. Zu beachten ist

dabei, das die erstellte Klasse Person nur Variablen in Form

von Value Types definiert und somit nicht über Referenzen

auf andere Objekte verfügt. Interessant ist, was nun inner-

halb der for-in-Schleife passiert. Denn neben unserem Code,

den wir innerhalb der Schleife ausführen lassen, werden im

Hintergrund automatisch weitere Funktionen ausgeführt.

79www.webundmobile.de  1.2016

Swift Mobile Development

Ganz zu Beginn der Schleife, vor Ausführung des ersten

Befehls, wird der Referenzzähler für das im jeweiligen Schlei-

fendurchlauf aktuelle person-Objekt um eins erhöht; schließ-

lich handelt es sich bei dieser Konstanten um einen neuen

und weiteren Verweis auf das zugrunde liegende Objekt.

Ebenso wird immer am Ende der for-in-Schleife, nachdem

unser letzter Befehl ausgeführt wurde, jener Referenzzähler

wieder um eins verringert; schließlich muss dann der Verweis

auf das entsprechende Objekt wieder freigegeben werden,

da es innerhalb der for-in-Schleife nicht mehr benötigt wird.

Und eben jener Prozess – Erhöhung des Referenzzählers zu

Beginn und Verringerung am Ende – wiederholt sich bei je-

dem Schleifendurchlauf für jedes Objekt innerhalb des Ar-

rays. Listing 2 stellt dieses Verhalten noch einmal detailliert

dar.

Und dabei müsste das an dieser Stelle gar nicht sein. Ein-

facher und schneller wäre es, stattdessen direkt auf das ei-

gentlich zugrunde liegende Objekt des Arrays zuzugreifen

und dieses zu verwenden. Und tatsächlich lässt sich dieses

Verhalten auch sehr einfach umsetzen, indem man den Typ

Person nicht als Klasse, sondern als Structure definiert, wie in

Listing 3 zu sehen.

Durch diese kleine Änderung am Code ist es an der besag-

ten Stelle innerhalb der for-in-Schleife nun nicht länger nö-

tig, das Reference Counting zu bemühen. Stattdessen haben

wir direkten Zugriff auf den kopierten Value Type und spa-

ren dem Programm Performance. Gerade bei sehr großen Ar-

rays ist das durchaus eine spürbare und lohnenswerte Form

der Code-Optimierung.

Allerdings gilt dabei zu beachten: Enthält die Structure Va-

riablen oder Konstanten auf Basis eines Reference Types, so

greift für diese auch automatisch wieder ARC und ein ent-

sprechendes Referenzzählen findet statt. Den genannten Vor-

teil spielt man also typischerweise mit Structures aus, die nur

über Value Types verfügen.

Structures und Reference Types
Betrachten wir in diesem Zusammenhang nun noch ein wei-

teres Beispiel, das eine mögliche Optimierung des eigenen

Swift-Codes im Bereich des Reference Counting aufzeigt.

Nehmen wir dazu dieses Mal eine Structure, die über viele

verschiedene Variablen verfügt, die alle einem Reference

Type entsprechen. Erstellen wir ein Objekt dieser Structure,

so wird für all diese Variablen der Referenzzähler initial auf

eins gesetzt. So weit, so gut.

Erstellen wir nun aber eine Kopie dieser Structure und wei-

se diese einer anderen Variable per Zuweisung zu, so muss

auch der Referenzzähler für jede der in der Structure existie-

renden Reference Types entsprechend erhöht werden. Wie

zuvor beim Beispiel der for-in-Schleife kann das bei umfang-

reichen Structures mit vielen Reference Types durchaus Per-

formance-Einbußen verursachen.

In solch einem Fall kann es sinnvoll sein, eine Art Wrapper-

Klasse zu erstellen, die das entsprechende Structure enthält.

Werden dann an anderer Stelle weitere Verweise auf diese

Structure benötigt, so wird nicht die Structure selbst mit ih-

ren vielen Reference Types kopiert, sondern stattdessen eine

neue Referenz auf die Wrapper-Klasse erzeugt. Somit erhöht

sich zwar deren Referenzzähler, die der vielen zugrunde lie-

genden Reference Types der Structure bleiben aber unverän-

dert und müssen nicht erhöht oder angepasst werden.

Dynamic Dispatch
Ein mächtiges Sprach-Feature von Swift ist das sogenannte

Dynamic Dispatch. Darüber prüft Swift, an welcher Stelle es

eine bestimmte Funktion aufrufen oder einen spezifischen

Wert auslesen soll, und spielt in diesem Zusammenhang bei

Vererbung eine zentrale Rolle. Ein typisches Beispiel in die-

sem Zusammenhang zeigt Listing 4.

Es werden zwei Klassen Vehicle und Motorboat definiert,

wobei Letztere eine Subklasse von Vehicle ist. Eine derartige

Arbeit mit Klassen gehört zum Alltag eines jeden Apple-Ent-

wicklers und ist unser täglich Brot. Und an dieser Stelle ha-

class Person {

 var firstName: String?

 var lastName: String?

}

var personArray: [Person] = ...

for person in personArray {

 ...

}

Listing 1: Array mit Objekten einer Klasse auslesen

class Person {

 var firstName: String?

 var lastName: String?

}

var personArray: [Person] = ...

for person in personArray {

 <Erhöhung des Referenzzählers für person>

 ...

 <Verringerung des Referenzzählers für person>

}

Listing 2: Array mit Verweis aufs Referenzzählen

struct Person {

 var firstName: String?

 var lastName: String?

}

var personArray: [Person] = ...

for person in personArray {

 ...

}

Listing 3: Array mit Objekten einer Structure auslesen

▶

80 1.2016  www.webundmobile.de

SwiftMobile Development

ben wir die Möglichkeit, unseren Code mit entsprechenden

Schlüsselwörtern weiter zu optimieren – sofern es die Pro-

grammlogik hergibt, doch dazu komme ich gleich.

Betrachten wir nun einmal, wie Dynamic Dispatch auf

Grundlage des genannten Szenarios arbeitet, wenn wir an

anderer Stelle in unserem Code eine Funktion wie in Listing 5

gezeigt haben, die als Parameter ein Vehicle-Objekt erwartet

und darauf die Methode startDriving aufruft.

Nun, was geschieht in dieser Funktion? Es wird der Wert

der Property manufacturer ausgegeben sowie die Methode

startDriving auf dem übergebenen Vehicle-Objekt aufgeru-

fen. Das ist das, was wir Entwickler implementiert haben und

auch offenkundig sehen. Doch was verborgen bleibt, ist die

interne Arbeit, die Swift zusätzlich noch zu durchlaufen hat,

um diese Funktion erfolgreich ausführen zu können.

Denn das Problem ist: Vehicle könnte über Subklassen in

unserem Programm verfügen, und eben jene Subklassen

könnten eine eigene Implementierung für die Property ma-

nufacturer oder die Methode startDriving besitzen. In einem

solchen Fall sorgt Dynamic Dispatch dafür, dass auch die kor-

rekte Funktion des übergebenen Objekts aufgerufen wird.

Wie man sich vorstellen kann, verbraucht ein solcher Vor-

gang Ressourcen und Performance. Wenn es daher aufgrund

der eigens definierten Klassenstruktur nicht sinnvoll ist, das

bestimmte Funktionen einer Klasse von Subklassen über-

schrieben werden können, sollten diese entsprechend ge-

kennzeichnet werden. In Swift gibt es dazu das Schlüsselwort

final.

final wird vor die Deklaration einer Property oder Methode

gesetzt, um dafür zu sorgen, dass diese nicht von Subklassen

der entsprechenden Klasse mit einer eigenen Implementie-

rung überschrieben werden können. Entsprechend weiß

auch Swift, dass es in solch einem Fall für die entsprechen-

den Eigenschaften nicht nach passenden Implementierungen

in möglichen Subklassen suchen muss.

Dadurch kann bereits mit dieser kleinen Änderung die Per-

formance von Swift-Code deutlich verbessert werden. In un-

serem Beispiel aus Listing 5 könnten beispielsweise so die

Property manufacturer und speed als final gekennzeichnet

werden, da von unserer Seite nicht erwartet wird, dass Sub-

klassen die Logik dieser Eigenschaften verändern. Listing 6

zeigt die entsprechende Aktualisierung der Klassen Vehicle

und Motorboat.

Access Control
Eine weitere Möglichkeit zur Optimierung des eigenen Swift-

Codes im Zusammenspiel mit Dynamic Dispatch stellen die

Access Control Level dar, die in Swift zur Kennzeichnung von

Klassen, Properties und Methoden verwendet werden kön-

nen. Diese geben an, inwieweit die Eigenschaften einer

Sourcecode-Datei oder eines Moduls in Swift auch in ande-

ren Bereichen verfügbar sind. Insgesamt existieren in Swift

drei Level, um die Access Control im Code abzubilden:
�� �private: Die Eigenschaft ist nur innerhalb der Sourcecode-

Datei zugänglich, in der sie deklariert wurde.
�� �internal: Die entsprechende Eigenschaft steht innerhalb

des Moduls zur Verfügung, in dem sie definiert wurde.

�� �public: Die entsprechende Eigenschaft steht immer zur Ver-

fügung, auch von anderen Modulen aus.

Der Access Level internal stellt dabei den Standard dar und

gilt immer, wenn kein anderer Level gesetzt ist. An vielen

Stellen ergibt es aber beispielsweise Sinn, eine Property oder

class Vehicle {

 var manufacturer: String?

 var speed: Int?

 func startDriving() {

 speed = 10

 }

 func printVehicleInfo() {

 print("Hersteller: \(manufacturer)")

 print("Geschwindigkeit: \(speed)")

 }

}

class Motorboat: Vehicle {

 var boatType: String?

}

Listing 4: Dynamic DispatchStructure

func startVehicle(vehicle: Vehicle) {

 print("Starte Fahrzeug von Hersteller \

 (vehicle.manufacturer).")

 vehicle.startDriving()

}

var myMotorboat = Motorboat()

myMotorboat.manufacturer = "Crownline"

startVehicle(myMotorboat)

Listing 5: Funktion zum Starten eines Vehicle

class Vehicle {

 final var manufacturer: String?

 final var speed: Int?

 func startDriving() {

 speed = 10

 }

 func printVehicleInfo() {

 print("Hersteller: \(manufacturer)")

 print("Geschwindigkeit: \(speed)")

 }

}

class Motorboat: Vehicle {

 var boatType: String?

}

Listing 6: Verwendung von final

81www.webundmobile.de  1.2016

Swift Mobile Development

Methode rein als private zu deklarieren und somit sicherzu-

stellen, dass sie an keiner anderen Stelle im Programm zur

Verfügung steht. Gerade für die internen Abläufe und Eigen-

schaften einer Klasse ist dieses Access Level sehr oft sinnvoll.

Und setzt man es passend an den korrekten Stellen, verbes-

sert man damit sogleich die Performance des eigenen Swift-

Codes. Denn auch bei den Access Levels gilt: Wenn Swift

weiß, dass eine Eigenschaft aufgrund der private-Deklaration

nur innerhalb einer einzige Klasse implementiert sein kann

und in keinerlei Subklassen oder anderen Modulen Verwen-

dung findet, ist auch eine entsprechende Überprüfung von-

seiten Swifts unnötig.

Whole Module Optimization
Neben den bisher gezeigten Optimierungen des eigentlichen

Swift-Quellcodes gibt es noch eine weitere Möglichkeit,

schnell und effizient den eigenen Swift-Code zu verbessern.

Apple bezeichnet dieses Feature als Whole Module Optimi-

zation. Bevor man sich damit beschäftigt, was dieses Feature

tut, und verstehen kann, wie es den eigenen Swift-Code op-

timiert, möchte ich zunächst das grundlegende Prinzip von

Modulen und Source Files in Swift erläutern.

In Swift werden die Quellcode-Dateien in Modulen zusam-

mengefasst. Ein Modul bildet dabei eine logische Gruppe für

mehrere zusammenhängende Source Files, daher sind Mo-

dule typischerweise Frameworks oder Apps.

Swift prüft bei Funktionsaufrufen und Eigenschaften im-

mer ein zugehöriges Source File nach dem anderen. Dadurch

kommt es auch zu den bereits im Zusammenspiel mit Dyna-

mic Dispatch beschriebenen Problemen, dass Swift so bei-

spielsweise bei Vererbung erst einmal prüfen muss, ob es

nicht noch an irgendeiner anderen Stelle eine Subklasse mit

einer eigenen Implementierung der gewünschten Funktiona-

lität gibt. Hier fehlt eine übergreifende Modulsicht, die es

Swift erlauben würde, selbst ohne Keywords wie final oder

private zu erkennen, ob es eine alternative Implementierung

für eine Eigenschaft gibt oder nicht. Und genau da kommt die

Whole Module Optimization ins Spiel.

Bei Whole Module Optimization handelt es sich um ein

neues Optimization Level, das Sie für Swift-Projekte in den

Build Settings für den Compiler aktivieren können (Bild 1). Ist

dieser Optimization Level gesetzt, setzt der Compiler zukünf-

tig die Source Files eines Moduls vollständig zusammen und

weiß so bei Funktionsaufrufen von vornherein, ob diese bei-

spielsweise über eine zusätzliche Subklasse erfolgen oder

nicht. Mit dieser für uns kleinen Änderung erhält Swift die

Rundumsicht auf ein Modul und erkennt sofort, wie es be-

stimmte Eigenschaften aufzurufen und zu nutzen hat, ohne

dafür diverse Prüfungen durchzuführen und damit die Perfor-

mance in Mitleidenschaft zu ziehen.

Gerade aufgrund des geringen Aufwands für uns Entwick-

ler, Whole Module Optimization in eigenen Projekten zu ak-

tivieren, und des daraus resultierenden Performance-Ge-

winns sollte sich jeder einmal diesen neuen Optimization Le-

vel unbedingt näher ansehen.

Fazit
Swift ist von Haus aus eine sehr sichere und stabile Sprache.

Nichtsdestoweniger sollte man an die in diesem Artikel vor-

gestellten Fallstricke im Blick behalten, um den eigenen

Swift-Code optimieren zu können. Bereits für uns einfache

Aktionen wie das klare Deklarieren von Properties und Me-

thoden mittels final oder private hilft ungemein, die Perfor-

mance der eigenen Apps zu verbessern. Und gerade große

und komplexe Projekte können so von bisweilen sehr einfa-

chen Optimierungen profitieren.

Nicht zuletzt sorgt die neue Whole Module Optimization

dafür, mit einem Klick in den Build Settings die Performance

unseres Swift-Codes deutlich zu verbessern. Hier zeigt es sich

deutlich, mit wie viel Engagement und Herzblut Apple an

Swift arbeitet. Freuen wir uns also auf die kommenden Opti-

mierungen.� ◾

Performance: Mittels Whole Module Optimization kann die Performance von Swift-Code deutlich verbessert werden (Bild 1)

Thomas Sillmann
ist leidenschaftlicher iOS-App-Entwickler, Trai-

ner und Autor. Freiberuflich tätig programmiert

er für den App Store eigene Apps sowie Apps in

Form von Kundenaufträgen. Er ist Autor eines

erfolgreichen Fachbuchs und mehrerer Kurz-

geschichten.
�� �Swift-Blog von Apple

https://developer.apple.com/swift/blog

Links zum Thema

82 1.2016  www.webundmobile.de

Grunt und PhoneGapMobile Development

I ch stieg im Frühjahr 2015 in ein bereits seit

Herbst 2014 laufendes PhoneGap-Projekt ein.

Es war ein technologischer Mix aus AngularJS,

jQuery, Bootstrap, Ionic und anderen Java

Script-Frameworks. Der Code war ziemlich ver-

worren, riesige Factory- und Controller-Dateien

existierten, wovon eine davon sämtliche Ab-

hängigkeiten zu beinhalten schien. Ein nettes

Projekt, wie man es eben kennt, das schnell ge-

wachsen ist, ein wenig nach dem Motto »func-

tions first, code quality last«.

Es wurde für alle drei relevanten Tablet-Platt-

formen (iOS, Android, Windows 8) munter da

ran weiterentwickelt. Der Aufwand, diese eine

App für alle drei Plattformen zur Verfügung zu

stellen, war enorm hoch. Dann kam der Kunde

auf die Idee, diese App für andere Märkte zur

Verfügung zu stellen, allerdings jeweils mit ei-

nem anderen (abgespeckten) Funktionsumfang

oder gar völlig neuen Funktionen, welche zu-

geschnitten wären für diesen neuen Markt (zum Beispiel ein

anderer Rechenkern, Tracking, Farbgestaltung).

Wichtig war dabei, dass Funktionen, die der Markt niemals

verwenden durfte (weil nicht bezahlt oder einfach nicht ver-

fügbar) komplett aus dem Programmcode entfernt werden

mussten. Ein einfaches Ausblenden im Code à la ng-

if=‘!marktDE‘ war nicht ausreichend. Auf Grund von Reverse

Engineering wäre es möglich gewesen, die deaktivierten

Funktionen zu reaktivieren. Dies wollte man unbedingt ver-

meiden.

Eine Möglichkeit, diese Anforde-

rungen abzubilden, wäre gewesen, ei-

nen neuen Branch im Repository anzu-

legen für den Markt X und irgend-

wann für den Markt Y und so fort. Hier

den Code synchron zu halten ist

schwierig. So etwas wollte ich nicht

haben – die App-Modularisierung mit

Grunt war geboren.

Diese Architektur-Beschreibung

zielt primär auf existierende Projekte,

funktioniert aber natürlich auch mit

Projekten von der grünen Wiese. Wer

das Glück hat, solch ein Projekt von

Beginn an zu konzipieren, kann hier-

mit den Grundstein legen, um die App

zukunftssicher zu gestalten. Alle an-

deren hingegen haben nun einen inte-

Modularisierung ist bei einem umfangreichen Projekt das Gebot der Stunde.

Modularisierung
Modularisierte Apps mit GRUNT und PhoneGap

ressanten Weg vor sich, ihre App-Entwicklung modularer zu

gestalten, denn die Märkte werden kommen.

Eine einfache App modularisieren
Um zu verstehen, worum es hier geht, schauen Sie sich den

sehr einfach gehaltenen Entwurf dieser App an (Bild 1). Zu er-

kennen sind ein Hauptmenü mit den Buttons Kundendash-

board, Angebot berechnen und Impressum. Zu sehen ist das

geöffnete Kundendashboard mit dem Button Kunde wech-

seln und einigen Informationen zum

ausgewählten Kunden. Ich halte die-

ses Beispiel so einfach wie möglich, da

die grundlegende Vorgehensweise

zum Identifizieren und Ausgliedern

von Modulen immer dieselbe ist. Zur

Strukturierung der App sind einige

vorbereitende Schritte erforderlich,

bevor es an die Modularisierung geht.

Identifizieren der Module
Anhand dieses einfachen Beispiels ist

es leicht, die einzelnen Module und

deren Abhängigkeiten zu identifizie-

ren. In diesem Fall hat das Modul Kun-

dendashboard eine Abhängigkeit zum

Modul Kundenliste, in der ein neuer

Kunde ausgewählt werden kann. Eine

App nur mit dem Modul Kundendash-

Entwurf der App: Hauptmenü mit diversen Buttons (Bild 1)

Abhängigkeiten: Die ermittelten Modul-

Abhängigkeiten für die App (Bild 2)

83www.webundmobile.de  1.2016

Grunt und PhoneGap Mobile Development

board und ohne das Modul Kundenlis-

te zu erzeugen würde keinen Sinn er-

geben.

Die Funktion Angebot berechnen

funktioniert nur mit einem aktiven

Kunden (Modul Kundendashboard)

und verwendet eine spezielle Ange-

bots-Engine zur Berechnung diverser

Werte für exakt diesen Markt (DE).

Das Impressum ist unabhängig,

zeigt aber je nach konfiguriertem

Markt andere Einträge an.

Zu sehen sind die ermittelten Mo-

dul-Abhängigkeiten für diese hypo-

thetische App in Bild 2. Auf den dafür

notwendigen Programmcode geht

dieser Artikel nicht ein, er dient nur

dazu die Modularisierung anhand die-

ser einfach strukturierten App zu er-

läutern.

Identifizieren von globalen
Frameworks
Das Entrümpeln der index.html wird

ungern gemacht, muss aber sein.

Frameworks wie AngularJS, Bootstrap

und Ionic gehören in die Kategorie

Global und werden immer geladen,

Spezialfälle wie chartjs, js-pdf et cete-

ra sollten nur geladen werden, wenn

ein inkludiertes Modul diese benötigt.

Ansonsten sind diese Frameworks nur

Ballast und werden deshalb aus der

index.html entfernt. Ein Platzhalter an

der geeigneten Stelle in dieser Datei

sorgt dafür, dass benötigte Module

später an die richtige Stelle importiert

werden können.

Aufbau der Projektstruktur
Die Verzeichnisstruktur dieser App in

Bild 3 macht die Projektstruktur sicht-

bar. Im Verzeichnis src befinden sich die einzelnen App-Bau-

steine, die vom Build-Prozess zu einer funktionsfähigen App

zusammengebaut werden. Im Verzeichnis src/base/www be-

findet sich die App noch im Rohzustand (ist dort nicht lauffä-

hig) und es sind zwei Template-Dateien (mainMenuConfig.

json.template und config.xml.template) vorhanden. Diese

Templates enthalten Platzhalter, die erst im Build-Prozess mit

gültigen Werten befüllt werden.

Das Verzeichnis src/base enthält den globalen Rumpfcode,

der bei jedem App-Build verwendet wird. Dort sind auch die

Dateien index.html, app.js (Startdatei der App) und die config.

xml.template (PhoneGap-Konfigurationsdatei) enthalten.

Die globalen Frameworks (AngularJS, jQuery, Ionic …) be-

finden sich im Unterverzeichnis lib, und im Verzeichnis temp-

lates sind globale HTML-Dateien vorhanden, die immer be-

nötigt werden – beispielsweise für das

Hauptmenü und allgemeine Dialog-

fenster. In den Verzeichnissen plat-

forms und plugins könnten spezifische

Anpassungen hinterlegt werden, die

beim Build Prozess verwendet werden.

Diese werden in diesem Artikel aller-

dings nicht näher betrachtet.

Zu Beginn eines frischen Projekts

könnte das src/base/www-Verzeichnis

eventuell noch eigenständig lauffähig

sein (zum Beispiel durch ein ionic

serve). Im Lauf der Zeit hingegen wer-

den sicherlich einige Template-Datei-

en entstehen, deren Inhalte erst durch

einen Build gesammelt und eingefügt

werden.

In unserem Beispiel wäre dies die

Datei src/base/www/config/mainMe

nuconfig.json.template, eine hypothe-

tische Konfigurationsdatei, die als In-

halt ein JSON-Objekt enthält, das von

einem MenuController ausgewertet

werden kann.

Das Verzeichnis src/lib enthält Java

Script-Frameworks, die nur nach Be-

darf hinzugezogen werden. Sofern ein

Modul eine Abhängigkeit zu einem

solchen Framework enthält, wird die-

ses geladen, ansonsten nicht. Die Da-

tei libraryProperties.json beschreibt

den Inhalt dieses Verzeichnis. Die be-

nötigten Frameworks werden später

zusammen mit den globalen Frame-

works in ein entsprechendes Build-

Verzeichnis kopiert und die index.

html danach für diese Imports (Java

Script und CSS) angepasst.

Im Verzeichnis src/modules sind die

einzelnen App-Funktionen als Modu-

le ausgelagert. Jedes Modul enthält

sämtliche benötigten Dateien (Java

Script, CSS, HTML, JSON, Bilder …). Konfiguriert werden

diese durch eine ebenfalls enthaltene config.json-Datei. Um

eine lose Koppelung zu erreichen, gibt es hier keine Regist-

rierungsdatei wie bei den JavaScript-Frameworks im Ver-

zeichnis src/lib.

Aufbau eines Moduls
Bisher war viel von Modulen zu lesen, doch wie genau sieht

so etwas nun aus? In Bild 4 ist der Verzeichnisinhalt des Mo-

duls Kundendashboard zu sehen und in Listing 1 die dazuge-

hörige Konfigurationsdatei.

Ein Modul enthält sämtliche benötigten Dateien, es gibt

keine Abhängigkeiten zu Dateien, die sich in anderen Modu-

len (Verzeichnissen) befinden. Ein Modul kann aber in des-

sen Konfigurationsdatei angeben, dass es Abhängigkeiten ▶

Die Verzeichnisstruktur der App macht die

Projektstruktur sichtbar (Bild 3)

84 1.2016  www.webundmobile.de

Grunt und PhoneGapMobile Development

zu anderen Modulen und Frameworks hat (zum Beispiel be-

nötigt das Modul Kundendashboard unbedingt das Modul

Kundenliste und das fremde JavaScript-Framework jspdf).

Sogar das HTML zur Anzeige des Buttons Kundendash-

board im Hauptmenü ist in einer separaten Datei (customer-

dashboardMainMenu.html) untergebracht und wird in der

config.json beschrieben (Attribut mainMenuButton).

Gehen wir nun auf die einzelnen Attribute in der config.

json vom Kundendashboard ein.

Dies ist eine kleine Basis-Auswahl an Attributen, die zwin-

gend benötigt werden, um ein Modul autark existieren zu las-

sen. Es steht dem Entwickler frei, hier eine Vielzahl an zu-

sätzlichen Funktionsbeschreibungen unterzubringen. Jede

davon muss dann von einem dafür angepassten Grunt-Task

bearbeitet werden.

Das eindeutige Attribut id dient zum Identifizieren dieser

Modul-Konfigurationsdatei. In der Projektdatei zu dieser App

(Listing 2) werden sämtliche Module angegeben (modules),

die in der App verwendet werden sollen. Beim Build läuft

dann ein spezieller ModuleManager-Task über dieses Daten-

konstrukt und verwendet die ID als Verzeichnisnamen, um

die jeweils dort enthaltende config.json zu laden (src/mo

dules/<id>/config.json). Aus diesem Grund ist die ID gleich-

bedeutend mit dem Verzeichnisnamen, da es keine Registrie-

rungsdatei gibt, die alle Module umfasst. Dies wurde so kon-

zipiert, um eine lose Koppelung zu erreichen.

Um eine vollständige Abkoppelung von den zu ladenden

Angular-Modulen zu erreichen, ist es notwendig, diese Mo-

dule aus der app.js fernzuhalten. In dem Attribut appModu-

leInclude wird daher das zu inkludierende Modul abgelegt.

Ein Grunt-Task sammelt alle diese Informationen und fügt

diese durch einen simplen Suchen-und-Ersetzen-Befehl in

die Datei app.js ein. Zu sehen ist in Listing 3 der modulemana-

gerAddAppModuleIncludes-Task und in Listing 4 die sehr ver-

einfachte Datei app.js mit den Platzhaltern.

In den Attributen js, css , images, json und view werden die

Dateien angegeben, die dieses Modul ausmachen. Diese

werden (wie alle anderen Attribute auch) vom Task module-

managerCreateModuleData in einer globalen Datenstruktur

(im Gruntfile) gesammelt, um später von einem separaten

{

 "buildDirectory": "de",

 "bundleAppVersion": "1.0",

 "bundleAppName": "My App",

 "bundleIdentifier": "de.cqf.myapp",

 "bundleDescription": "App fuer den Markt DE",

 "bundleAuthorName": "Siegfried-Thor Bolz",

 "bundleAuthorEmail": "info@cq-factory.de",

 "bundleAuthorWebsite":

 "http://www.cq-factory.de/",

 "modules": ["customerdashboard", "customerlist",

 "disclaimer_de", "productengine_de",

 "tracking_analytics"],

 "mainMenuButtonModules": ["customerdashboard",

 "productengine_de", "disclaimer_de"],

 "libDependencies" : ["chartjs", "jspdf"]

}

Listing 2: Projektdatei

Verzeichnisinhalt des Moduls Kundendashboard (Bild 4)

{

 "id": "customerdashboard",

 "appModuleInclude": ["customerdashboard.module"],

 "js": ["customerdashboardController.js",

 "customerdashboardRestFactory.js",

 "customerdashboardModule.js"],

 "css": ["customerdashboard.css"],

 "images": ["customerdashboardMenuIcon.png"],

 "json": [],

 "view": ["customerdashboard.html",

 "customerdashboardMainMenu.html"],

 "mainMenuButton": {

 "id": "customerdashboard",

 "template": "templates/customerdashboard/

 customerdashboardMainMenu.html",

 "state": "app.customerdashboard",

 "tracking": {

 "id": 123

 }

 },

 "route": [{

 "state": "app.customerdashboard",

 "name": "customerdashboard",

 "url": "/customerdashboard",

 "cache": "true",

 "templateUrl": "templates/customerdashboard/

 customerdashboard.html",

 "controller": "customerdashboardController"

 }],

 "libDependencies" : ["jspdf"],

 "moduleDependencies": ["customerlist"]

}

Listing 1: Konfigurationsdatei

85www.webundmobile.de  1.2016

Grunt und PhoneGap Mobile Development

Task in das Build-Zielverzeichnis kopiert zu werden. Der

Sammelprozess ist in Listing 5 zu sehen. Selbstverständlich

können hier noch weitere Datentypen untergebracht werden,

die ein Modul benötigt. Das Objekt mainMenuButton be-

schreibt, wie der Button aussehen würde, wenn dieser im

Hauptmenü gerendert werden soll. Angegeben ist das

HTML-Template, der state und einige Tracking-Informatio-

nen. Der Aufbau dieses Objekts kann auch völlig anders ge-

staltet sein. Die Objekte route werden ebenfalls alle gesam-

melt, um später (wie beim appModuleInclude) in die app.js

eingefügt zu werden. So ist gewährleistet, dass jedes Modul

genau weiß, wie es aufgerufen werden kann.

Das Array libDependencies enthält IDs, die in der library-

Properties.json (Verzeichnis src/lib) vorhanden sind. Zu se-

hen ist diese Konfigurationsdatei in Listing 6. In unserem Bei-

spiel hat das Kundendashboard eine Abhängigkeit zum

module.exports = function (grunt) {

 grunt.registerTask

 'modulemanagerAddAppModuleIncludes',

 'Modify app.js to add the modules.', function () {

 var moduleData = grunt.config.get("moduleData");

 var sourceFile = "src/base/www/js/app.js";

 var targetFile = "build/de/www/js/app.js";

 var createdAppModuleString =

 createAppModuleIncludeString

 (moduleData.appModuleIncludes.

 getAllItemsAsList());

 grunt.task.run(["replacetextinfile:" + sourceFile

 + ":" + targetFile + "://@@appmodules@@:" +

 createdAppModuleString]);

 });

 function createAppModuleIncludeString(anArray) {

 var resultString = '';

 for (var i = 0; i < anArray.length; i++) {

 resultString += "\n, '" + anArray[i] + "'";

 }

 return resultString;

 }

};

module.exports = function (grunt) {

 grunt.registerTask('replacetextinfile', '', function

 (sourceFile, targetFile, stringToSearch,

 stringToReplace) {

 grunt.config.set('replace.source.file', sourceFile);

 grunt.config.set('replace.target.file', targetFile);

 grunt.config.set('replace.search.string',

 stringToSearch);

 grunt.config.set('replace.target.string',

 stringToReplace);

 grunt.task.run(['replace:file']);

 });

};

// Configuration for "grunt-text-replace"

module.exports = {

 file: {

 src: ['<%= replace.source.file %>'],

 dest: '<%= replace.target.file %>',

 replacements: [{

 from: '<%= replace.search.string %>',

 to: '<%= replace.target.string %>'

 }]

 },

 multiple: {

 src: ['<%= replace.source.file %>'],

 dest: '<%= replace.target.file %>',

 replacements: '<%= replace.replacements %>'

 }

};

Listing 3: modulemanagerAddAppModuleIncludes

▶

angular.module('myapp', ['ionic',

'LocalStorageModule', 'ngCordova',

'myapp.common.module'

// Placeholder for the GRUNT T

// ask modulemanagerAddAppModuleIncludes

//@@appmodules@@

])

 .config(function ($stateProvider) {

 $stateProvider

 .state('app', {

 name: "app",

 url: "/app",

 abstract: true,

 templateUrl: "templates/menu.html",

 controller: 'menuController'

 })

 // Placeholder for the GRUNT Task

 // modulemanagerAddRoutes

 //@@appRoutes@@

 ;

 }

);

Listing 4: app.js

86 1.2016  www.webundmobile.de

Grunt und PhoneGapMobile Development

Framework jspdf. Diese Abhängigkeiten werden alle von ei-

nem Grunt-Task gesammelt und später als Imports in die in-

dex.html hinzugefügt. Das Attribut moduleDependencies ist

die kleinere Version der Modul-Abhängigkeiten von der Pro-

jektdatei. Hier kann auf Modul-Ebene angegeben werden,

welche Module benötigt werden, damit dieses Modul funk

tionieren kann. Ein Plausibilitätscheck in Grunt kann dabei

überprüfen, ob die gewünschten Module überhaupt von der

Projektdatei geladen werden. Wenn nicht, dann muss das ge-

forderte Modul in der Projektdatei hinzugefügt werden.

Die Projektdatei
Jede App-Variante benötigt eine eigene Projektdatei. Unser

kleines Beispiel enthält nur die notwendigsten Einträge für

den Markt DE. Diese wären:
�� �Verzeichnisname, der im Build-Ordner (buildDirectory) er-

zeugt wird.
�� �Zu verwendende Module (modules-Array).
�� �Bundle-Informationen, die in der config.xml von PhoneGap

eingefügt werden können.
�� Zu ladende Frameworks (libDependencies).
�� �Die im Hauptmenü sichtbaren Buttons (mainMenuButton-

Modules).

Beim Ausführen des Grunt-Tasks buildProject muss die Pro-

jektdatei als Parameter mit übergeben werden:

grunt buildProject -projectData=projectDE.json

Das Gruntfile ist für diesen Artikel sehr einfach aufgebaut

(Listing 7). Das Data-Objekt speichert die mittels Parameter

übergebene Projektdatei im Attribut projectData. Die Regis-

trierungen der JavaScript-Frameworks landen im Attribut

{

 "chartjs": {

 "css": [],

 "js": ["chartjs/js/chart.js"]

 },

 "jspdf": {

 "css": [],

 "js": ["js-pdf/js/jspdf.min.js"]

 },

 "piwik": {

 "css": [],

 "js": ["piwik/js/piwik.js"]

 },

 "canvg": {

 "css": [],

 "js": ["canvg/js/canvg.js",

 "canvg/js/rgbcolor.js", "canvg/js/StackBlur.js"]

 }

}

Listing 6: libraryProperties.json

module.exports = function (grunt)

{

 grunt.registerTask

 ('modulemanagerCreateModuleData',

 'Manages multiple module config data.',

 function ()

 {

 // Get access to the global moduleData.

 var moduleData = grunt.config.get("moduleData");

 var moduleConfigs =

 grunt.option('moduleConfigs');

 for (var index in moduleConfigs) {

 var moduleConfig = moduleConfigs[index];

 grunt.log.writeln("Reading module config

 [" + moduleConfig.id + "].");

 var moduleDirectory = moduleConfig.id;

 if (moduleConfig.appModuleIncludes) {

 addArrayContentToHashmap

 (moduleConfig.appModuleInclude,

 moduleData, "appModuleInclude",

 moduleDirectory);

 }

 if (moduleConfig.js) {

 addFilesToArray(moduleConfig.js,

 moduleData, "js", moduleDirectory);

 }

 }

 grunt.config.set("moduleData", moduleData);

 });

 function addFilesToArray(anArrayOfFiles,

 aModuleData, aProperty, moduleDirectory) {

 for (var i = 0; i < anArrayOfFiles.length; i++) {

 var fileObject = {};

 fileObject.sourceFile = moduleDirectory + "/"

 + anArrayOfFiles[i];

 fileObject.targetFile = moduleDirectory + "/"

 + anArrayOfFiles[i];

 aModuleData[aProperty].push(fileObject);

 }

 }

 function addArrayContentToHashmap(anArray,

 aModuleData, aProperty, id) {

 for (var i = 0; i < anArray.length; i++) {

 aModuleData[aProperty].put(id, anArray[i]);

 }

 }

};

Listing 5: Sammelprozess

87www.webundmobile.de  1.2016

Grunt und PhoneGap Mobile Development

libraryData. Interessant ist hier der Blick auf das Konstrukt

moduleData, in dem sämtliche Informationen aus allen ver-

wendeten Modul-Konfigurationsdateien gespeichert wer-

den. Dies geschieht während der Ausführung diverser modu-

leManager-Tasks. Um mehrfache Einträge zu vermeiden,

wurde bei einigen Speichern eine HashMap-Datenstruktur

verwendet (Listing 8).

Nachdem sämtliche Module identifiziert und extrahiert

wurden, muss ein Grunt-Prozess (nennen wir diesen build-

Project) etabliert werden, der alles zusammenbaut, abhängig

von der konfigurierten Projektdatei (Listing 9). Dazu wird die

Projektdatei eingelesen (geschieht im Gruntfile) und durch

module.exports = function (grunt) {

 eval(grunt.file.read('grunt/helper/HashMap.js'));

 var path = require('path');

 require('load-grunt-tasks')(grunt);

 grunt.loadTasks('grunt/tasks');

 require('load-grunt-config')(grunt, {

 configPath: path.join(process.cwd(),

 'grunt/configs'),

 init: true,

 data: {

 projectData: grunt.file.readJSON('grunt/

 projects/' + grunt.option('projectData')),

 libraryData: grunt.file.readJSON

 ('src/lib/libraryProperties.json'),

 moduleData: {

 loadedModules: new HashMap(),

 appModuleIncludes: new HashMap(),

 js: [],

 css: [],

 view: [],

 images: [],

 json: [],

 routes: new HashMap(),

 libDependencies: new HashMap(),

 moduleDependencies: new HashMap(),

 mainMenuButtonModules: new HashMap()

 }

 },

 mergeFunction: require('recursive-merge'),

 loadGruntTasks: {

 pattern: 'grunt-*',

 config: require('./package.json'),

 scope: 'devDependencies'

 },

 postProcess: function (config) {

 },

 preMerge: function (config, data) {

 }

 });

};

Listing 7: Gruntfile

HashMap = function () {

 this._dict = [];

};

HashMap.prototype._get = function (key) {

 for (var i = 0, couplet; couplet = this._dict[i];

 i++) {

 if (couplet[0] === key) {

 return couplet;

 }

 }

};

HashMap.prototype.put = function (key, value) {

 var couplet = this._get(key);

 if (couplet) {

 couplet[1] = value;

 } else {

 this._dict.push([key, value]);

 }

 return this; // for chaining

};

HashMap.prototype.get = function (key) {

 var couplet = this._get(key);

 if (couplet) {

 return couplet[1];

 }

};

HashMap.prototype.length = function () {

 return this._dict.length;

};

HashMap.prototype.getAllItemsAsList = function () {

 var retList = [];

 for (var i = 0; i < this._dict.length; i++) {

 retList[i] = this._dict[i][1];

 }

 return retList;

};

HashMap.prototype.remove = function (key) {

 for (var i = 0, couplet; couplet = this._dict[i];

 i++) {

 if (couplet[0] === key) {

 this._dict.splice(i, 1);

 }

 }

};

Listing 8: HashMap.js

▶

88 1.2016  www.webundmobile.de

Grunt und PhoneGapMobile Development

die nachfolgenden Tasks ausgewertet. Dabei werden die da-

rin gespeicherten Informationen in temporäre Datenspeicher

übernommen; diese befinden sich im Datenkonstrukt modu-

leData vom Gruntfile. Dies wären dann sämtliche geladenen

Module (in loadedModules), die benötigten JavaScript-

Frameworks (libDependencies), sämtliche Dateien und Kon-

figurationen aller Module, darunter auch die Buttons, die im

Hauptmenü angezeigt werden sollen (mainMenuButtonMo-

dules), und die AngularJS-Module (appModuleIncludes).

Selbstverständlich können hier noch eine Vielzahl an zu-

sätzlichen Informationen mit übernommen werden.

Der Standard-Prozess durchläuft dabei mehrere Schritte

(Grunt Tasks), welche problemlos für Spezialanpassungen er-

weitert werden können. Hier werden nun die wichtigsten da-

von erläutert.

Der erste Task von buildProject lädt nun alle benötigten

Modul-Konfigurationen (Task loadModules). Dabei werden

nur die jeweiligen config.json-Dateien aus den entsprechen-

den Modul-Verzeichnissen (src/modules/<id>/config.json)

geladen und in moduleData .loadedModules gespeichert.

Sollte aufgrund einer riesigen Modulliste das ein oder ande-

re Modul mehrfach angegeben worden sein, so ist dies kein

Problem, da die interne Datenstruktur eine HashMap abbil-

det und als key die ID des Moduls verwendet und als Value

den Inhalt der geladenen config.json. Dasselbe Prinzip gilt

auch für die anderen Daten, die in einer HashMap landen.

Aus diesem Grund ist die id in der config.json gleichbedeu-

tend mit dem Verzeichnisnamen in src/modules/.

Module auswerten
Dieser übergeordnete Task (hier moduleManager genannt)

iteriert dabei über sämtliche geladenen Modul-Konfiguratio-

nen (moduleData .loadedModules) und speichert die darin

enthaltenen Werte in die entsprechenden Speicher des Kon-

strukts moduleData im Gruntfile. Dieser Task besteht für ge-

wöhnlich aus mehreren Unter-Tasks wie zum Beispiel modu-

lemanagerCreateModuleData.

Es wurden nun alle Daten gesammelt, welche diese App

ausmachen. In den folgenden Schritten werden diese Daten

ausgewertet.

Jedes Modul kann in seiner config.json angeben, welche

Module unbedingt geladen sein müssen, um korrekt zu funk-

tionieren. Im Fall eines Kundendashboard-Moduls wäre es

schön, wenn ein Kundenliste-Modul zur Auswahl eines Kun-

den verfügbar wäre. Andernfalls würde es keinen Sinn erge-

ben. Welche Module auf jeden Fall geladen worden sind,

steht in loadedModules, dessen Inhalte aus der eingelesenen

Projektdatei stammen.

Zur Lösung des Problems kann man ganz einfach über das

Attribut moduleDependencies einer jeden Konfigurationsda-

tei iterieren und prüfen, ob Modul X in loadedModules vor-

handen ist. Durch die verwendete HashMap geht das recht

angenehm mit der get()-Funktion.

Eine zusätzliche Überprüfungsmöglichkeit wäre ein soge-

nannter Modul-Ausschluss. Wenn es zum Beispiel mehrere

Tracking-Module gibt, aber nur eines davon geladen sein

darf, dann wäre in den betroffenen config.json Dateien ein

Attribut moduleExclusions (Listing 10) sinnvoll, das eine Liste

module.exports = function (grunt) {

 grunt.registerTask('buildProject', 'starting point

 for building your app.', function () {

 // Run tasks synchronously, in order.

 grunt.task

 .run("loadModules")

 .then(function () {

 })

 .run("moduleManager")

 .then(function () {

 })

 .run("menuManager")

 .then(function () {

 })

 .run("configxmlManager")

 .then(function () {

 })

 .run("doWhatEverManager")

 .then(function () {

 })

 .run("annotateManager")

 .then(function () {

 })

 .run("uglifyManager")

 .then(function () {

 })

 .run("zipManager")

 .then(function () {

 grunt.log.write('PRODUCTION FILE CREATED!').

 ok();

 })

 ;

 });

};

Listing 9: buildProject.js

{

 "id": "tracking_analytics",

 "appModuleInclude": ["tracking.module"],

 "js": ["tracking_analyticsModule.js",

 "tracking_analyticsFactory.js"],

 "css": [],

 "view": [],

 "route": [],

 "libDependencies" : [],

 "moduleDependencies": [],

 "moduleExclusions": ["tracking_piwik"]

}

Listing 10: config.json

89www.webundmobile.de  1.2016

Grunt und PhoneGap Mobile Development

an Modulen enthält, die nicht geladen werden dürfen. Zweck-

mäßig ist das unter anderem, wenn mehrere Tracking-Modu-

le zur Verfügung stehen (zum Beispiel weil jeder Markt eine

andere Lösung bevorzugt), aber nur eines davon in die App

inkludiert werden darf.

Modul-Dateien kopieren
Nachdem sämtliche Modul-Konfigurationen überprüft und

validiert worden sind, ist es an der Zeit, die gesammelten Da-

teien (JavaScript, CSS, HTML, JSON, Bilder et cetera) an die

richtigen Stellen im Build-Verzeichnis zu kopieren.

Da die ID einer Konfigurationsdatei gleichbedeutend ist

mit dem Verzeichnisnamen, in dem sich dieses Modul befin-

det, kann der Kopierbefehl recht leicht erzeugt werden. Im

Modul-Verzeichnis befinden sich alle Dateien eines Moduls

an derselben Stelle, in der App dagegen müssen diese an die

entsprechenden Stellen im Code-Baum kopiert werden:
�� JavaScript: /build/de/www/js/<modulname>/
�� CSS: /build/de/www/css/<modulname>/

�� HTML: /build/de/www/templates/<modulname>/
�� Bilder: /build/de/www/templates/<modulname>/

Zu sehen ist in Listing 11 der entsprechende Task module

managerCopyModuleDataFiles mitsamt der copyFilesSync-

Funktion. Um einen synchronen Ablauf der Kopieroperatio-

nen zu gewährleisten, wurde hier das Grunt-Modul glob-cp

verwendet. Dies ist notwendig, um im Anschluss daran not-

wendige Anpassungen in den kopierten Dateien vornehmen

zu können (wenn notwendig!) und um den asynchronen Ab-

lauf von Grunt zu ordnen.

Im Anschluss an das Kopieren muss nun die index.html an-

gepasst werden, unter anderem mit dem Task modulemana-

gerAddCSSImportsToIndexHtml (Listing 12). Es ist notwendig,

die CSS- und JavaScript-Imports einzubauen. In diesem Bei-

spiel sehen Sie exemplarisch, wie dies für CSS-Imports mit

module.exports = function (grunt) {

 grunt.registerTask

 ('modulemanagerCopyModuleDataFiles', 'copy all the

 collected files from the moduleData.', function ()

 {

 var moduleData = grunt.config.get("moduleData");

 var projectData =

 grunt.config.get('projectData');

 var targetDirectory = 'build/' +

 projectData.buildDirectory + '/';

 copyFilesSync(moduleData.js, targetDirectory +

 'www/js');

 // Copy all CSS files

 copyFilesSync(moduleData.css, targetDirectory +

 'www/css');

 // Copy all View files

 copyFilesSync(moduleData.view, targetDirectory +

 'www/templates');

 });

 function copyFilesSync(anArrayOfFiles,

 targetDirectory) {

 // https://www.npmjs.com/package/glob-cp

 var cp = require('glob-cp');

 for (var i = 0; i < anArrayOfFiles.length; i++) {

 cp.sync('src/modules/' +

 anArrayOfFiles[i].sourceFile, targetDirectory

 + '/' + anArrayOfFiles[i].targetFile);

 }

 }

};

Listing 11: modulemanagerCopyModuleDataFiles

▶

module.exports = function (grunt)

{

 grunt.registerTask('modulemanagerAddCSSImportsTo

 IndexHtml', 'Modify index.html and add css

 imports.', function () {

 var projectData = grunt.config.

 get('projectData');

 var moduleData = grunt.config.get("moduleData");

 var targetFile = 'build/' +

 projectData.buildDirectory + '/www/index.html';

 var createdCSSString =

 createCSSIncludes(moduleData.css);

 grunt.config.set('replace.source.file',

 targetFile);

 grunt.config.set('replace.target.file',

 targetFile);

 grunt.config.set('replace.search.string',

 "<!--@@cssModuleIncludes@@-->");

 grunt.config.set('replace.target.string',

 createdCSSString);

 grunt.task.run(['replace:file']);

 });

 function createCSSIncludes(anArray) {

 var resultString = '';

 var template = " <link href='css/%1'

 rel='stylesheet'>\n";

 for (var i = 0; i < anArray.length; i++) {

 resultString += template.replace('%1',

 anArray[i].targetFile);

 }

 return resultString;

 }

};

Listing 12: modulemanagerAddCSSImportsToIndexHtml

90 1.2016  www.webundmobile.de

Grunt und PhoneGapMobile Development

dem Grunt-Modul grunt-text-replace erledigt werden kann

(dies erfolgt analog für JavaScript-Imports). Dabei wird in der

index.html nach dem String <!--@@cssModuleIncludes@@-->

gesucht und dieser durch die CSS-Importe ersetzt. Dieses

Modul kann bedarfsweise auch für mehrfache Ersetzungen

verwendet werden.

In dem Attribut appModuleInclude der Modul-Konfigura-

tionen befinden sich die in die app.js einzubindenden Modu-

le und im Attribut route die dazugehörigen Routen. Diese Da-

ten wurden ebenfalls zuvor gesammelt und können nun zu-

sammen mit dem Grunt-Modul grunt-text-replace in die app.

js eingefügt werden.

Was an Dateien noch fehlt, sind die auf Anfrage benötigten

JavaScript-Frameworks wie chartjs, jspdf et cetera. Im Attri-

but libDependencies der Modul-Konfigurationen befinden

sich die gewünschten Frameworks, die ebenfalls gesammelt

worden sind. Hier gibt es einen kleinen Unterschied zum Vor-

gehen bei den Modulen.

Ein solches Framework besteht oft aus mehreren Java

Script- und CSS-Dateien, die ihre eigenen Unterverzeichnis-

se haben – mit eingebauten relativen Pfaden und anderen un-

schönen Dingen. Um nun das aufwendige Zerpflücken der

einzelnen Dateien zu vermeiden, wurde als Lösung die Re-

gistrierungsdatei libraryProperties.json eingeführt.

Abhängige JavaScript-Frameworks kopieren
Dort werden sämtliche Dateien mit relativen Pfaden ausge-

hend vom jeweiligen Framework-Verzeichnis angegeben.

Ein Grunt-Task iteriert nun über die gesammelten libDepen-

dencies (moduleData.libDependencies), und anhand der dort

gespeicherten id kann der Iterator auf das Attribut des Ob-

<!DOCTYPE html>

<html>

 <head>

 <link href="lib/ionic/css/ionic.css"

 rel="stylesheet">

 <link href="lib/bootstrap/css/bootstrap.min.css"

 rel="stylesheet">

 <link href="css/ourStyle.css" rel="stylesheet">

 <!--@@cssLibDependencyIncludes@@-->

 <!--@@cssModuleIncludes@@-->

 </head>

 <body ng-app="yourApp">

 <script type="text/javascript"

 src="lib/jquery/js/jquery.min.js"></script>

 <script type="text/javascript"

 src="lib/bootstrap/js/bootstrap.min.js"></script>

 <script type="text/javascript"

 src="lib/ionic/js/ionic.bundle.js"></script>

 <script type="text/javascript"

 src="lib/momentjs/js/moment-locales.js"></script>

 <script type="text/javascript"

 src="lib/angular-route/js/angular-route.min.js">

 </script>

 <script type="text/javascript"

 src="cordova.js"></script>

 <!--@@jsLibDependencyIncludes@@-->

 <script type="text/javascript"

 src="js/helper/HashMap.js"></script>

 <script type="text/javascript"

 src="js/modal/modalFactory.js"></script>

 <script type="text/javascript"

 src="js/modal/modalModule.js"></script>

 <!--@@jsModuleIncludes@@-->

 <script type="text/javascript"

 src="js/global/app.js"></script>

 </body>

</html>

Listing 13: index.html

{

 "templates": [

 {

 "id": "customerdashboard",

 "template": "templates/customerdashboard/

 customerdashboardMainMenu.html",

 "state": "app.customerdashboard",

 "tracking": {

 "key": 123

 }

 },

 {

 "id": "productengine",

 "template": "templates/productengine_de/

 productengineMainMenu.html",

 "state": "app.productengine",

 "tracking": {

 "key": 456

 }

 },

 {

 "id": "disclaimer",

 "template": "templates/disclaimer_de/

 disclaimerMainMenu.html",

 "state": "app.disclaimer",

 "tracking": {

 "key": 789

 }

 }

]

}

Listing 14: mainMenuConfig.json

91www.webundmobile.de  1.2016

Grunt und PhoneGap Mobile Development

jekts in der libraryProperties.json zugreifen und hat sämtliche

benötigten Daten, um einen Kopiervorgang einzuleiten. Zu-

sätzlich muss noch die index.html mit den neuen Imports an-

gepasst werden.

In diesem Task werden sämtliche globalen Dateien aus

dem Verzeichnis /src/base/www/ in das Build-Verzeichnis

kopiert. Enthalten sind dabei auch die globalen Frameworks

(AngularJS, Ionic, jQuery …), die ein Must-have sind. Diese

zu modularisieren ergibt keinen Sinn. Die Imports dafür müs-

sen nicht angepasst werden, sie stehen schon von Anfang an

in der index.html (Listing 13).

Hauptmenü erzeugen
Das Attribut mainMenuButtonModules der Projekt-Konfigu-

rationsdatei ist eine Map, welche als Key eine Modul-ID ver-

wendet und als Value das Objekt mainMenuButton aus der

entsprechenden Modul Konfigurationsdatei (config.json) ent-

hält.

Diese Informationen wurden gesammelt und können nun

zu einem gigantischen JSON-Objekt-String zusammenge-

baut werden, der einen Platzhalter in der Konfigurations-

datei src/base/www/config/mainMenuConfig.json.template

ersetzt:

{

 "templates":

 @@mainMenuConfigInclude@@

}

Diese angepasste Datei (Listing 14) wird dann an die entspre-

chende Stelle im Build-Verzeichnis kopiert und kann vom

Hauptmenü-Controller geladen und verwendet werden, um

die Buttons für die View zu rendern und die Klicks darauf

handzuhaben:

<!-- MAIN MENU -->

<ion-content>

 <!-- Use the mainMenuConfig.json for the button

 rendering. -->

 <div ng-repeat="item in model.mainMenuData.templates">

 <ng-include src="item.template"></ng-include>

 </div>

</ion-content>

Dafür verantwortlich wäre der Grunt-Task menuManager.

Dies wurde jetzt nur exemplarisch skizziert. Ein Modul

kann selbstverständlich ebenfalls ein eigenes Menü enthal-

ten, und indem man diesem ein Attribut wie ownMenuBut-

tons gibt, kann ein Task dafür generisch Menü-Konfiguratio-

nen erzeugen, analog zum Task menuManager.

PhoneGap-Konfigurationsdatei anpassen
Diese Konfigurationsdatei liegt ebenfalls in einem Template-

Format vor:

<?xml version='1.0' encoding='utf-8'?>

<widget id="@@widgetid@@" version="@@appversion@@"

xmlns="http://www.w3.org/ns/widgets"

 xmlns:cdv="http://cordova.apache.org/ns/1.0">

 <name>@@name@@</name>

 <description>

 @@description@@

 </description>

 <author email="@@authoremail@@" href="@@authorweb@@">

 @@authorname@@

 </author>

 <content src="index.html" />

</widget>

Die Werte für die Platzhalter sind in der Projektdatei enthal-

ten. Der dazugehörige Task configxmlManager sucht die

Platzhalter, ersetzt diese mit den Werten und kopiert an-

schließend die Datei in das Build-Verzeichnis.

Nachdem nun alle benötigten Dateien kopiert und die ent-

sprechenden Dateien (index.html, app.js und diverse Konfi-

gurationsdateien) angepasst worden sind, können nachfol-

gende Tasks vorbereitende Tätigkeiten für das Deployment

vornehmen.

Dazu gehören Uglify (versucht JavaScript und CSS Datei-

en unlesbar zu machen), Concat (alle unlesbar gemachten

Dateien in eine einzige Datei zusammenfügen) und Zippen

(das komplette /build/de/www/-Verzeichnis in ein Zipfile pa-

cken). Anschließend kann das Zipfile auf den Build-Server

kopiert werden.

Fazit
In einem umfangreichen Projekt ist der Prozess der Modula-

risierung nicht von heute auf morgen zu erledigen. Es fängt

damit an, dass neue Funktionen in dieser vorgestellten mo-

dularen Bauweise erzeugt werden müssen. Bei jeder Refac-

toring-Runde werden dann immer mehr Funktionen modula-

risiert. Zuerst die groben Hauptfunktionen (wie das Kunden-

dashboard aus diesem Beispiel), und dann die darin enthal-

tenen Unterfunktionen.

Wichtig ist dabei, darauf zu achten, dass die Abhängigkei-

ten der Module untereinander nicht verloren gehen. Hält

man sich strikt an die gezeigte Vorgehensweise, dann ist die

App nicht nur leichter wartbar und für neue Team-Mitglieder

leichter zu verstehen, sondern es erleichtert auch das Austau-

schen von Funktionen und das Erzeugen von Variationen für

die Bedürfnisse anderer Märkte.� ◾

Siegfried-Thor Bolz
ist Diplom-Informatiker (FH) und als freiberufli-

cher IT-Berater mit den Schwerpunkten Adobe

AEM und Mobile-Hybrid-App-Entwicklung für

die CQ-Factory GmbH tätig. Sein Fokus liegt

dabei auf der Interoperabilität beider Welten.
www.siegfried-bolz.de

92 1.2016  www.webundmobile.de

DSLMobile Development

D ie Grundzüge einer DSL haben wir im ersten Teil dieser

Artikelserie kennengelernt, und der zweite Teil betrach­

tete immer wiederkehrende Muster in mobilen Business­

anwendungen. Jetzt gehen wir wieder einen Schritt zurück

und betrachten die Properties eines Datenobjekts im Detail.

Die Eigenschaften der Datenobjekte ändern sich durch

Eingaben am mobilen Gerät oder den Abruf vom Server. Ei­

ne der immer wiederkehrenden Aufgaben ist es, diese Ände­

rungen im UI sichtbar zu machen. Das heißt, wir benötigen

einen Mechanismus, der entsprechende Events auslöst und

verarbeitet. Bei Qt sind das die Signals und Slots.

Signals und Slots
Betrachten wir zunächst das Signals-und-Slots-Konzept all­

gemein. Ein Signal ist ein Funktionsaufruf, der dann erfolgt,

wenn ein Ereignis (Event) oder eine Aktion erfolgt ist. Das Si­

gnal ruft alle Event Handler auf, die auf exakt dieses Signal

lauschen.

Ein Slot kann mit einem Event Handler verglichen werden

und wird von Signalen aufgerufen.

Ein Button beispielsweise hat ein clicked()-Signal, und ei­

ne Anwendung kann einen Slot implementieren, der exakt

auf dieses Signal achtet. Neben den Standardsignalen wie cli-

cked() bei einem Button kann eine Anwendung eigene Sig­

nale definieren und diese dann feuern, wenn erforderlich.

Der dazu erforderliche Befehl lautet

emit <signal>.

In der Header-Datei definieren wir

eigene Signale wie folgt:

class MyObject: public QObject{

 Q_OBJECT

 ...

signals:

 void mySignal();

 ...

}

Und um das Signal abzufeuern, können

wir an beliebiger Stelle emit ausführen:

void MyObject::myFunction() {

 ...

 emit mySignal();

}

Slots, die Signale empfangen und ver­

arbeiten können, werden wie ganz nor­

Stressfreie Implementierung dank des Einsatzes einer DSL (Domain-Specific Language).

Qt Properties und Listen
Xtext, Xtend: Domain-Specific Language für C++ / Qt (Teil 3)

male Methoden definiert, allerdings mit dem Keyword slots

in der Header-Datei versehen:

class MyObject: public QObject {

 Q_OBJECT

 ...

public slots:

 void mySlotHandler();

 ...

}

Dieses Konzept kann sowohl in C++ als

auch in QML genutzt werden. In vielen

Fällen verknüpft man Signale und Slots

vollkommen unbemerkt. Soll beispiels­

weise ein Container nur sichtbar sein,

wenn eine Checkbox angeklickt wur­

de, dann werden nur die entsprechen­

den Properties gesetzt:

CheckBox {

 id: calSyncCheckbox

 onCheckedChanged: {

 // do something

 }

} // end calSyncCheckbox

Container {

 id: calDefaultContainer

Signale und Slots: Kopplung eines Sliders an einen Button (Bild 1)

Minimodell: Ausschnitt aus dem Daten

modell (Bild 2)

93www.webundmobile.de  1.2016

DSL Mobile Development

 visible: calSyncCheckbox.checked

 topPadding: 40

 bottomPadding: 20

 ...

}

An der CheckBox gibt es ein Signal checked(). Zu diesem

Signal existiert direkt an der CheckBox ein Slot onChecked-

Changed(), wodurch wir wiederum beliebige andere Funk­

tionen aufrufen können.

Am Container gibt es die Property visible, deren Wert true

oder false ist. Im Beispiel ist die Property visible direkt an das

Signal checked() der CheckBox gekoppelt, und sobald der

User die CheckBox anklickt, wird der Container ohne weite­

ren Programmieraufwand sichtbar. Natürlich hat auch die vi-

sible-Property des Containers ein visibleChanged()-Signal,

und im Slot onVisibleChanged() könnten weitere Aktionen

erfolgen.

Durch geschickte Kombinationen der bereits eingebauten

Signale und Slots an den Standard-UI-Controls lassen sich

bereits ohne großen Aufwand flexible Bedienoberflächen de­

signen, die immer nur das anzeigen, was wichtig ist, oder au­

tomatisch die Farbe eines Fonts ändern, wenn an einem an­

deren Objekt ein Ereignis aufgetreten ist. Bild 1 zeigt die

Kopplung eines Sliders an einen Button.

Das Arbeiten mit Signals und Slots ist sehr einfach und in­

tuitiv und wird auch genutzt, um UI-Controls mit Datenobjek­

ten zu verbinden.

Das Datenobjekt
Um es überschaubar zu gestalten, betrachten wir hier nur ei­

nen kleinen Ausschnitt aus dem Beispielprojekt. Die Gesamt­

übersicht finden Sie im Heft 11/2015 der web & mobile develo

per auf Seite 91.

Bild 2 zeigt unser Minimodell, das wir in diesem Teil ver­

wenden und das sich nur auf Auftrag, Positionen und Kunde

bezieht. Wenn Sie alles selbst nachvollziehen möchten, laden

Sie sich das Beispielprojekt aus GitHub herunter und redu­

zieren das DSL-Datenmodell entsprechend. Das Bild enthält

nicht nur das Klassendiagramm, sondern auch das Datenmo­

dell für unsere DSL.

Fangen wir mit dem kleinsten Datenobjekt an – dem Kun­

den (Customer). Auch bei diesem recht einfachen Beispiel

werden wir sehen, wie viel Arbeit uns die DSL abnimmt. Was

wird alles generiert? In der Header-Datei stehen zunächst

Angaben für das Q_PROPERTY-Makro:

Q_PROPERTY(int id READ id WRITE setId NOTIFY idChanged

FINAL)

Q_PROPERTY(QString companyName READ companyName WRITE

setCompanyName NOTIFY companyNameChanged FINAL)

Q_PROPERTY(GeoCoordinate* coordinate READ coordinate

WRITE setCoordinate NOTIFY coordinateChanged FINAL)

Die Anweisung Q_PROPERTY enthält als Erstes den Daten­

typ und den Property-Namen int id. Danach folgen die Me­

thoden für READ und WRITE – also die Getter und Setter:

READ id WRITE setId

Als Letztes wird der Name des Signals angegeben, das auto­

matisch bei Änderungen an der Property gefeuert wird:

NOTIFY idChanged

Die Variable, die Methoden und das Signal müssen aber noch

definiert werden – hier für die Property id:

public:

 int id() const;

 void setId(int id);

import org.ekkescorner.data 1.0

Page {

 id: myOrderPage

 property Order myOrder

 property Item myItem

 Container {

 Label {

 text: "Positions: " +

 myOrder.positionsPropertyList.length

 }

 }

 function processPositions() {

 var summary = 0.0

 for (var i=0;

 i<myOrder.positionsPropertyList.length; i++) {

 myItem = myOrder.positionsPropertyList[i]

 summary += myItem.quantity

 }

 }

}

Listing 1: Listen-Properties

▶

Datenobjekte in QML: Der Type ist bekannt, und damit auch alle

Properties (Bild 3)

94 1.2016  www.webundmobile.de

DSLMobile Development

Q_SIGNALS:

 void idChanged(int id);

private:

 int mId;

Und die nachfolgenden Codezeilen sind die Implementie­

rung in der .cpp:

Customer::Customer(QObject *parent) : QObject(parent),

mId(-1)

{

}

int Customer::id() const

{

 return mId;

}

void Customer::setId(int id)

{

 if (id != mId)

{

 mId = id;

 emit idChanged(id);

 }

}

Der Einsatz der DSL hat den Vorteil, dass wir für all dies nur

eine Zeile Code benötigen:

QDeclarativeListProperty<Item>

Order::positionsPropertyList()

{

 return QDeclarativeListProperty<Item>(this, 0,

 &Order::appendToPositionsProperty,

 &Order::positionsPropertyCount,

 &Order::atPositionsProperty,

 &Order::clearPositionsProperty);

}

void Order::appendToPositionsProperty

(QDeclarativeListProperty<Item> *positionsList,

Item* item)

{

 Order *orderObject = qobject_cast<Order *>

 (positionsList->object);

 if (orderObject) {

 item->setParent(orderObject);

 orderObject->mPositions.append(item);

 emit orderObject->addedToPositions(item);

 } else {

 qWarning() << "cannot append Item* to positions "

 << "Object is not of type Order*";

 }

}

int Order::positionsPropertyCount

(QDeclarativeListProperty<Item> *positionsList)

{

 Order *order = qobject_cast<Order *>

 (positionsList->object);

 if (order) {

 return order->mPositions.size();

 } else {

 qWarning() << "cannot get size positions "

 << "Object is not of type Order*";

 }

 return 0;

}

Item* Order::atPositionsProperty

(QDeclarativeListProperty<Item> *positionsList,

int pos)

{

 Order *order = qobject_cast<Order *>

 (positionsList->object);

 if (order) {

 if (order->mPositions.size() > pos) {

 return order->mPositions.at(pos);

 }

 qWarning() << "cannot get Item* at pos " << pos <<

 " size is "

 << order->mPositions.size();

 } else {

 qWarning() << "cannot get Item* at pos " << pos <<

 "Object is not of type Order*";

 }

 return 0;

}

void Order::clearPositionsProperty

(QDeclarativeListProperty<Item> *positionsList)

{

 Order *order = qobject_cast<Order *>

 (positionsList->object);

 if (order) {

 // positions are contained - so we must delete

 // them

 for (int i = 0; i < order->mPositions.size(); ++i)

 {

 order->mPositions.at(i)->deleteLater();

 }

 order->mPositions.clear();

 } else {

 qWarning() << "cannot clear positions " <<

 "Object is not of type Order*";

 }

}

Listing 2: Elemente der Liste

www.webundmobile.de  1.2016

dto Customer {

 domainKey int id;

...

}

Bei umfangreichen Datenobjekten kann das sonst ganz schön

in Arbeit ausarten, und wenn dann Änderungen vorgenom­

men werden, vergisst man häufig das eine oder andere. Eine

DSL hilft also auch dabei, schneller Refactorings vorzuneh­

men.

Wie bereits in den ersten Teilen beschrieben, generiert die

DSL auch den Code, um die Datenobjekte dem UI (QML) be­

kanntzumachen:

qmlRegisterType<Customer>("org.ekkescorner.data", 1, 0,

"Customer");

Jetzt kann auf den Customer wie auf ein Javascript-Objekt

zugegriffen werden – aber mit dem Vorteil, dass der Type be­

kannt ist und damit auch alle Properties – wie Bild 3 zeigt.

Ebenso sind alle events (Signals) bekannt:

myCustomer.onCompanyNameChanged:

{

 console.debug("Company Name changed to " +

 myCustomer.companyName)

}

Etwas komplizierter wird der Einsatz von Q_PROPERTIES,

wenn es sich um Collections (0..*) handelt. Ohne Q_PROPER-

TIES müssten Collections als Listen vom Typ QVariantList an

das UI übergeben werden, und dort könnte darauf wie auf ein

JavaScript-Array zugegriffen werden. Allerdings wäre der

Type nicht bekannt und jedes Element wäre ein normales

JavaScript-Object.

Listen-Properties
Um auch Listen typsicher übergeben zu können, gibt es ein

ganz besonderes Q_PROPERTY vom Typ QDeclarativeList-

Property. Schauen wir uns das beim Auftrag (Order) an, der

eine Collection an Positionen (Items) enthält. Hier zunächst

die Q_PROPERTY dazu:

Q_PROPERTY(QDeclarativeListProperty<Item>

positionsPropertyList READ positionsPropertyList

CONSTANT)

Wir definieren die Q_PROPERTY als eine Property vom Typ

QDeclarativeListProperty<Item> und dazu einen Getter

(READ). Es gibt keine Signale und keine Setter (WRITE) –

aber wozu haben wir eine DSL? Im UI greifen wir auf die Lis­

te zu wie auf ein JavaScript-Array und erhalten jeweils Da­

tenobjekte vom type Item. Listing 1 zeigt ein kleines Beispiel.

Sieht aus wie JavaScript, ist JavaScript – arbeitet aber un­

ter der Haube mit kompilierten C++-Datenobjekten. Diese

Datenobjekte werden übrigens als Pointer übergeben, kön­

nen in mehreren UI-Controls im Einsatz sein, und bei ei­

TTrainings

www.developer-media.de/trainings
Weitere Informationen und Anmeldung unter

Trainings
für Webentwickler

Webentwicklung mit
ASP.NET, MVC und Web API
Trainer: David Tielke
16.-18.03.2016, München

Webanwendungen mit
HTML, CSS und JavaScript
Trainer: David Tielke
14.-15.03.2016, München

Angular2 mit TypeScript
Trainer: Johannes Hoppe,

Gregor Woiwode
20.-22.04.2016, München

 Node.js & Co. –
Entwickeln für die Cloud
Trainer: Golo Roden
3 Tage, Termin & Ort nach Absprache

Qualitätssicherung in
PHP-Projekten
Trainer: Sebastian Bergmann
2 Tage, Termin & Ort nach Absprache

 Domain Driven Design
mit PHP
Trainer: Stefan Priebsch
2 Tage, Termin & Ort nach Absprache

PHP Security
Trainer: Arne Blankerts
2 Tage, Termin & Ort
nach Absprache

▶

96 1.2016  www.webundmobile.de

DSLMobile Development

ner Änderung wirkt sich diese sofort überall aus – ob nun

QML oder C++. Aber nochmal zurück zur Implementierung

von QDeclarativeListProperty. Hier aus der Header-Datei:

public:

 QDeclarativeListProperty<Item>

 positionsPropertyList();

private:

 QList<Item*> mPositions;

So weit sieht es ja noch ganz normal aus – aber es werden ein

paar zusätzliche statische Methoden benötigt:

static void appendToPositionsProperty

(QDeclarativeListProperty<Item> *positionsList, Item*

item);

static int positionsPropertyCount

(QDeclarativeListProperty<Item> *positionsList);

static Item* atPositionsProperty

(QDeclarativeListProperty<Item> *positionsList, int

pos);

static void clearPositionsProperty

(QDeclarativeListProperty<Item> *positionsList);

Sehen wir uns dazu die Implementierung in der .cpp an, dann

wird schnell klar, warum diese Variante der Q_PROPERTY so

selten im Einsatz ist (Listing 2).

All dieser Programmieraufwand ist notwendig, um auf die

einzelnen Elemente der Liste zugreifen zu können oder die

Liste zu löschen. Leider haben wir damit aber noch keinen

schreibenden Zugriff auf die Elemente und bekommen auch

keine Signale, wenn sich etwas ändert.

Also bauen wir das selbst, und da es dann einfach ist, dies

als Pattern in die DSL einzufügen, wird es by magic bei Lis­

ten sofort mitgeneriert. Hier sind einige der zusätzlichen Me­

thoden und Signale:

public:

 Q_INVOKABLE

 Item* createElementOfPositions();

 Q_INVOKABLE

 void undoCreateElementOfPositions(Item* item);

 Q_INVOKABLE

 void addToPositions(Item* item);

 Q_INVOKABLE

 bool removeFromPositions(Item* item);

 QList<Item*> positions();

 void setPositions(QList<Item*> positions);

Q_SIGNALS:

 void positionsChanged(QList<Item*> positions);

 void addedToPositions(Item* item);

 void removedFromPositionsByUuid(QString uuid);

Das Makro Q_INVOKABLE stellt sicher, dass diese Methode

aus dem UI heraus aufgerufen werden kann. Listing 3 zeigt

exemplarisch die Implementierung von add/remove, um Po­

sitionen hinzuzufügen oder zu entfernen und das UI darüber

zu informieren. Jedes Mal, wenn ich mir den Code zur Ver­

waltung von Listen anschaue, weiß ich, warum ich die DSL

entwickelt habe.

Fazit
Wieder haben wir gesehen, welche Vorteile eine DSL bietet

und was für eine Leichtigkeit sich in einem Projekt ausbrei­

tet, wenn man sich für alle Patterns nur einmal die Arbeit ma­

chen muss.� ◾

Ekkehard Gentz
ist Autor, Trainer und Speaker auf Konferenzen.

Er entwickelt als Independent Software Archi

tect mobile Anwendungen für internationale

Kunden, ist BlackBerry Elite Member und

bloggt unter:
http://ekkes-corner.org

�� �DSL-Download
http://github.com/lunifera/lunifera-dsl-extensions/
tree/development

�� �DSL Sample Project
http://github.com/ekke/ekkes_dsl_sample

Links zum Thema

void Order::addToPositions(Item* item)

{

 mPositions.append(item);

 emit addedToPositions(item);

}

bool Order::removeFromPositions(Item* item)

{

 bool ok = false;

 ok = mPositions.removeOne(item);

 if (!ok) {

 qDebug() << "Item* not found in positions";

 return false;

 }

 emit removedFromPositionsByUuid(item->uuid());

 // positions are contained - so we must delete

 // them

 item->deleteLater();

 item = 0;

 return true;

}

Listing 3: add/remove

href

div

{ }
if

string

01000100
0101011101

011000

•	�Better Coding (Prototyping, Code Reviews,
Codequalität, Kodierrichtlinien)

•	�Architektur (Code strukturieren, Abhängig-
keiten, skalieren, Konzepte, Methoden,
MVC, Schichten, Hexagonal, SOA, CQRS, Event
Sourcing, Microservices)

•	�Best Practices (RAD, Craftsmanship,
Clean Code)

•	�Sprachen (C#, VB, F#, neue Sprachen)

•	�Datenzugriff (Entity Framework, ORM,
Data Models)

•	�Performance (skalierbar, high performance,
server - cloud, LAMP stack, Infrastrukturen)

•	�Crossplattform (web, hybrid, native,
SOA, Apache Device Map, Titanium, PhoneGap,
Sencha, QT etc.)

•	�Mobile Architekturen (mobile Middle-
ware, Infrastruktur, Backend)

•	�DevOps (Virtualisierung, Docker, VMWare,
etc.)

•	�Testing (TDD, ATDD, Unit-Test, Load-Test,
Integrationstest, Systemtest)

•	�Cloud/Server (Cloud-Dienste,
Datenbanken)

Jetzt Sessions einreichen!

20.-23. Juni 2016,
Messe Nürnberg

Call for
Papers
bis

10.01.2016

developer-week.de DeveloperWeek

Aussteller & Sponsoren: Veranstalter: Präsentiert von:

98 1.2016  www.webundmobile.de

Android StudioMobile Development

E s gibt etliche Ratgeber und Hinweise für die Optimierung

von Arbeitsabläufen, Strukturen und To-do-Listen im pri-

vaten und beruflichen Umfeld. Gibt man unter Google den

Suchbegriff to-do-liste oder Strukturliste ein, so erhält man

Millionen von Suchmaschinenergebnissen. Was liegt also nä-

her, als sich eine eigene Aufgabenliste für das Smartphone zu

erstellen?

Grundfunktionalitäten
Bei der mobilen App-Entwicklung ist stets an die Zielgruppe

zu denken. Aus der Zielgruppe heraus ergeben sich die be-

nötigten Anforderungen an die App, deren Struktur und In-

haltstiefe.

Dieser Workshop kümmert sich nur um die technische Um-

setzung einer App auf einem Android-Zielsystem. Der Inhalt

beschränkt sich auf die Grundfunktionalitäten und Prozesse

in der App.

Auch bei der Entwicklung von Apps arbeitet man am effi-

zientesten, wenn man die Standardelemente der Benutzer-

schnittstelle des Android-Betriebssystems nutzt. Das bedeu-

tet: In der Konzeptionsphase sollten die Standardelemente

genutzt werden, die schon von Android vorgegeben werden.

So sparen Sie viel unnötigen Aufwand während der Entwick-

lung.

Wie Sie mit dem Listview-Control eine hilfreiche App erstellen.

Strukturhilfe
Benutzerschnittstelle Listenansicht

Bedenken Sie, dass individuelle Interaktionselemente viel

mehr Zeit bei der Entwicklung kosten.

Weiterhin sollten Sie auch als App-Entwickler darauf be-

dacht sein, die Businesslogik vom Frontend so weit wie mög-

lich zu entkoppeln. Auch sollte die Usability der App nicht

vernachlässigt werden. Man sollte bei jeder guten App mit

nur wenigen Clicks zur gewünschten Funktion kommen. Das

Ziel heißt bei der App-Entwicklung: isolieren, simplifizieren

und optimieren.

Android Studio
Mit Hilfe der von Google genehmigten IDE (Integrated De-

velopment Environment) Android Studio von Jet Brains kön-

nen auch Programmieranfänger sehr schnell zu guten, lauf-

fähigen Ergebnissen bei der App-Entwicklung kommen. Die

Entwicklungsumgebung bietet einen schnellen und unkom-

plizierten Einstieg in die Programmierung. Die IDE ist mit fol-

genden Features ausgestattet:
�� erweiterte Build-Tools,
�� �leistungsstarke Quellcode-Entwicklung (Smart-Editor,

Code Refactoring, Code-Analyse, IntelliSense-Unterstüt-

zung),
�� �eine schnelle grafische Bedienoberfläche und ein Layout-

Editor,
�� einfacher Zugriff auf Google-Dienste.

Weiterhin zählen auch erweitertes Debugging und Import-

Möglichkeiten dazu. Mit dem Layout-Editor von Android

Studio lässt sich die grafische Oberfläche in Android dekla-

rativ in XML definieren und so schnell und flexibel das ge-

wünschte Layout anpassen.

Hierbei fühlt sich der Editor flüssig und komfortabel an und

hilft somit auch bei der Zusammenstellung der Views und

Konfiguration der Steuerelemente.

Die eigene App
In diesem Workshop wird davon ausgegangen, dass Android

Studio zur Verfügung steht und installiert ist. Den Download

und Hilfe zur Installation von Android Studio finden Sie un-

ter http://developer.android.com/tools/studio.

Die Beispiel-App soll aufzeigen, wie schnell und effektiv,

mit ein wenig Programmiererfahrung eine einfache App für

Android erstellt werden kann.

Einfach heißt in diesem Fall aber nicht billig, sondern

meint, wie für Apps immer wieder gefordert, ein gutes Gleich-

gewicht zwischen Funktionalität und Einfachheit.

Die App soll Ihnen die Erstellung und Verwaltung einer

Strukturliste zur Verfügung stellen.Create New Project: Anlegen eines neuen Projekts (Bild 1)

99www.webundmobile.de  1.2016

Android Studio Mobile Development

Hierfür benötigen Sie ein Eingabefeld, einen Bestätigungs-

schalter für die Eingabeübernahme und eine Liste zur Anzei-

ge. Mit den Bedienelementen von Android lässt sich so etwas

sehr einfach gestalten. Sie können die Oberfläche mit Hilfe

des Layout-Editors erstellen oder die Objekteigenschaften

der Controls auf Quelltextebene über XML modellieren.

Projekt anlegen
Unter einem Projekt werden immer alle Artefakte der An-

wendung zusammengefasst. Dazu gehören die Quelltexte,

Konfigurationsdateien und auch Grafiken, Sounds und Ani-

mationen.

Legen Sie für die Beispiel-App ein neues Projekt an. Wäh-

len Sie hierfür im Startbildschirm einfach Start a new Android

Studio project oder über die Menüleiste File und New Project.

Daraufhin öffnet sich der Dialog Create New Project wie in

Bild 1. Hier legen Sie die grundlegenden Eigenschaften Ihres

Projekts fest. Der Application-Name wird später auf dem Ge-

rät angezeigt und bildet den Namen für die App. Wählen Sie

hier einen prägnanten Namen für Ihre App. Im Beispiel ver-

wenden wir den bescheidenen Begriff Meine Liste.

Die Klassen und Dateien werden unter Android, wie be-

kannt, in Paketen (Packages) abgelegt. Seien Sie daher bei

der Vergabe des Package-Namens besonders sorgfältig, vor

allem, wenn Sie die App im Google Play Store veröffentlichen

möchten. Der Paketname muss eindeutig sein.

Für das Beispiel behalten Sie den vorgeschlagenen Packa-

ge-Namen bei. Unter Project location legen Sie einfach den

Speicherort des Projekts fest.

Über Next rufen Sie die zweite Seite des Projekt-Assisten-

ten auf.

Dort legen Sie die Gerätekategorien fest, für die Ihre App

zur Verfügung stehen soll. Wählen Sie für das Beispiel die Ka-

tegorie Phone and Tablet aus und legen Sie das Minimum

SDK fest. Die App verwendet das API 15 und unterstützt so-

mit 87,9 Prozent aller Android-Devices. Plattformen können

mit dem Android SDK-Manager installiert und gelöscht wer-

den. Sie sollten für das Beispiel keine SDK-Version unterhalb

von Android 4 verwenden.

Ein Klick auf Next ruft den Assistenten Add an activity to

Mobile auf (Bild 2). Markieren Sie für das Beispiel Blank Acti-

vity und klicken Sie auf Next.

Im Dialogfenster Choose options for your new file konfigu-

rieren Sie dann die ausgewählte Activity. Vergeben Sie hier

den Klassennamen der Activity, den Namen der Layoutdatei,

sowie einen Titel und den Namen für die Menüeinträge-Da-

tei. Die Layout- und die Menü-Ressourcen-Datei werden im

XML-Format angelegt. Das Beispiel übernimmt die vorge-

schlagenen Einstellungen. Mit Finish schließen Sie die Pro-

jektanlage ab.

Projektstruktur
Android-Apps werden immer zu einer baumartigen Struktur

zusammengefasst. Hierbei bietet das Werkzeugfenster meh-

rere Sichten an. Die Ansicht Project entspricht dem Aufbau

der Ebenen innerhalb des Dateisystems, während die Sicht

Android die Struktur eines Projekts abbildet. So erhalten Sie

einen schnellen Zugriff auf die wichtigsten Dateien und Ver-

zeichnisse.

Bei Apps stellt die Bedienoberfläche immer das Aushänge-

schild einer Anwendung dar. Hierzu zählen vor allem Bilder,

Symbole, Texte und Steuerelemente. Sie sollten immer so ein-

gesetzt werden, dass sie den Anwender bei der Bedienung

der App anleiten und unterstützen.

Unter Android sollte Text immer zentral in der Datei strings.

xml abgelegt werden. Sie befindet sich im Verzeichnis res/

values. Passen Sie die Datei für die App wie in Listing 1 darge-

stellt an. Das Attribut name des Elements <string> wird im

Quelltext als Bezeichner verwendet.

Layout
Die Layoutbeschreibung kann auch vollständig in der Spra-

che XML modelliert werden. Die entsprechenden Dateien,

die mit layout beginnen, werden im Unterverzeichnis von res

abgelegt.

Das folgende Beispiel activity_main.xml ist Bestandteil des

Projekts und soll für die App wie in Listing 2 aufgeführt abge-

ändert werden. Sie stellt das allgemeine Design der Activity

dar.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Meine Liste</string>

 <string name="action_delete_done_tasks">

 Aufgabe löschen</string>

 <string name="action_delete_all">

 Alle Einträge löschen</string>

 <string name="context_delete">Löschen</string>

 <string name="context_edit">Bearbeiten</string>

 <string name="add_task">Aufgabe hinzufügen

 </string>

</resources>

Listing 1: strings.xml

Anlegen der gewünschten Activity (Bild 2) ▶

100 1.2016  www.webundmobile.de

Android StudioMobile Development

Hierbei ist die Grundstruktur absichtlich sehr übersichtlich

gehalten worden. Weiterhin benötigt die App noch ein List-

und Edit-Layout. Diese beiden Dateien können Sie über das

Kontextmenü New, Menu resource file im Layoutverzeichnis

res/layout anlegen. Listing 3 zeigt den Aufbau als XML für die

Struktur der Liste und Listing 4 das Layout für das Editieren

der Liste. Wird, wie im Beispiel, die Bedienoberfläche in ei-

ner XML-Datei deklariert und erst zur Laufzeit zu einem Ob-

jektbaum entfaltet, kann man die Referenzen auf die Kompo-

nenten über die Methode findViewById() ermitteln. Der ihr

übergebende Wert entspricht in der Regel einer Konstanten

aus R.id.

Das heißt also, die Basisklasse aller Bedienelemente ist an-

droid.view.View. Somit besteht die Bedienoberfläche einer

App aus einer oder mehreren Views oder von ihr abgeleite-

ten Klassen.

Programmlogik
Unter Android besteht eine App aus mindestens einer Acti

vity. Je nach Funktionsumfang kann auch eine Vielzahl von

Activities in einer App enthalten sein. Hierbei ist die Activity

einer Bedienoberfläche aus Views oder ViewGroups zuge-

ordnet. Somit stellen Activities die Grundbausteine einer App

dar, die sich gegenseitig aufrufen können.

Da im Beispiel nur eine Activity benutzt wird, können wir

jetzt beginnen, die Klasse MainActivity für die App zu Imple-

mentieren. Übernehmen Sie hierzu die Klasse MainActivity

aus Listing 5.

Als Erstes werden in der Klasse die benötigten Variablen

der App deklariert. Die Initialisierung wird in der onCreate()-

Methode der Activity vorgenommen. Die fehlende Implemen

tierung des ListAdapters folgt später.

Weiterhin müssen Sie auf das Anklicken der Schaltfläche

reagieren. Hierfür wird ein OnClickListener registriert. Die-

ses Interface besteht aus der Methode onClick() und reagiert

auf die Benutzeraktion.

Dann benötigen wir in der App noch ein Optionsmenü und

ein Kontextmenü für die Bearbeitung der Listeneinträge.

Wenn eine Activity ein Optionsmenü anbieten möchte, müs-

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.

 com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

>

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal"

 >

 <EditText

 android:id="@+id/input_task"

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:layout_weight="0.8"

 android:hint="@string/add_task"

 />

 <ImageButton

 android:id="@+id/add_task_button"

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:layout_weight="0.2"

 android:src="@drawable/ic_action_accept"

 />

 </LinearLayout>

 <ListView

 android:id="@+id/list_view"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:clickable="true"

 />

</LinearLayout>

Listing 2: Das XML-Layout der App

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.

 com/apk/res/android"

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:paddingTop="20dp"

 android:paddingBottom="20dp"

>

 <CheckBox

 android:id="@+id/list_checkbox"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:focusable="false"

 />

 <TextView

 android:id="@+id/list_task_view"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:focusable="false"

 />

</LinearLayout>

Listing 3: Layout für den Inhalt der Liste

101www.webundmobile.de  1.2016

Android Studio Mobile Development

sen Sie in der Activity die Metho-

de onCreateOptionsMenu() über-

schreiben. Hier wird das Menü

entfaltet, dessen Elemente in der

Datei actions.xml definiert wur-

den. Sie wird unter res/menu ab-

gelegt und hat folgenden Aufbau:

<menu xmlns:android="http://

schemas.android.com/apk/res/

android">

 <item android:id="@+id/action

 _delete_done_tasks"

 android:title="@string/action

 _delete_done_tasks"

 android:showAsAction="never"

 />

 <item android:id="@+id/action_delete_all"

 android:title="@string/action_delete_all"

 android:showAsAction="never"

 />

</menu>

Android unterstützt auch das Kon-

zept von Kontextmenüs. Hier wird

über das lange Antippen, also Tip-

pen und Halten, eines Elements

das Menü geöffnet.

Besonders gerne werden List-

Views mit Kontextmenüs versehen,

so, wie es auch in der Beispiel-App

vorgesehen ist. Der Bau des Kon-

textmenüs verläuft hierbei analog

zum Optionsmenü. Sie brauchen

bloß die Methoden onCreateCon-

textMenu() und onContextItemSe-

lected() zu überschreiben bezie-

hungsweise zu implementieren. Die context_menu.xml Datei

enthält die Elemente für das Kontextmenü und wird unter

res/menu abgelegt.

Das folgende Listing zeigt die benötigten Elemente:

<?xml version="1.0" encoding="UTF-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/

android"

>

 <item android:id="@+id/context_delete"

 android:title="@string/context_delete"

 />

 <item android:id="@+id/context_edit"

 android:title="@string/context_edit"

 />

</menu>

Somit ist das Grundgerüst für die App erstellt. Jetzt können

Sie die Aufgaben-Klasse für die Strukturliste erzeugen. Die-

se Klasse sorgt für das Speichern der eingetragenen Textin-

halte. Legen Sie hierfür, über das Kontextmenü New, Java

Class im Source-Verzeichnis eine neue Java-Klasse mit dem

Namen Aufgabe an. Das folgende Listing zeigt die benötigte

Implementierung:

public class Aufgabe {

 private String aufgabeContent;

 private boolean isDone;

 public Aufgabe(String aufgabeContent, boolean isDone) {

 this.taskContent = aufgabeContent;

 this.isDone = isDone;

 }

 public String getTaskContent() {

 return aufgabeContent;

 }

 public boolean isDone() {

 return isDone;

 }

<?xml version="1.0" encoding="UTF-8"?>

<LinearLayout xmlns:android=

 "http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:id="@+id/edit_dialog_layout"

 android:paddingLeft="10dp"

 android:paddingTop="20dp"

 android:paddingBottom="20dp"

 android:paddingRight="10dp"

>

 <TextView

 android:id="@+id/edit_message"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:textSize="20sp"

 android:layout_marginBottom="20dp"

 android:text="Edit Task"

 />

 <EditText

 android:id="@+id/edit_input"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:singleLine="false" >

 <requestFocus />

 </EditText>

</LinearLayout>

Listing 4 für das Editieren der Liste

▶

Erstellen einer Aufgaben-

liste (Bild 3)

Erledigt: Eine Aufgabe als

erledigt markieren (Bild 4)

102 1.2016  www.webundmobile.de

Android StudioMobile Development

 public void setTaskContent(String aufgabeContent) {

 this.aufgabeContent = aufgabeContent;

 }

 public void setIsDone(boolean isDone) {

 this.isDone = isDone;

 }

}

Hierbei übernimmt der String aufgabeContent das Speichern

des Textinhalts. Über isDone wird angegeben, ob der Eintrag

in der Liste erledigt ist, und die Getter- und Setter-Methoden

werden ebenfalls implementiert.

Android stellt mit der ListView eine Komponente zur Ver-

fügung, die auch mehrzellige Elemente und Grafiken darstel-

len kann. Auch eine Checkbox zum Anzeigen bestimmter Er-

eignisse ist möglich. In der Beispiel-App wird über eine

Checkbox der Listeintrag auf erledigt gesetzt und der Textin-

halt durchgestrichen.

ListView
Die Klasse ListActivity realisiert eine Listenansicht, die nor-

malerweise den gesamten Bildschirm ausfüllt. Die Methode

getListView() dieser Activity liefert eine Referenz auf ein zen-

trales Objekt des Typs ListView.

Um auf das Antippen eines Eintrags zu reagieren, wird ein

OnItemClickListener registriert. Welche Daten eine Liste an-

zeigt, wird über einen Adapter gesteuert. Hierfür steht schon

eine Vielzahl von fertigen Klassen zur Verfügung. Der Zugriff

 button.setOnClickListener(new

 View.OnClickListener() {

 public void onClick(View v) {

 if (input.getText().length() > 0) {

 tasks.add(new Aufgabe

 (input.getText().toString(), false));

 adapter.notifyDataSetChanged();

 input.setText("");

 }

 }

 });

 }

 @Override

 protected void onPause() {

 super.onPause();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.actions, menu);

 return super.onCreateOptionsMenu(menu);

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem

 item)

 {

 switch (item.getItemId()) {

 case R.id.action_delete_done_tasks:

 deleteDoneTasks();

 this.adapter.notifyDataSetChanged();

 break;

 case R.id.action_delete_all:

 this.tasks.clear();

 this.adapter.notifyDataSetChanged();

Listing 5: Die Klasse MainActivity der App (Teil 2)

import java.util.ArrayList;

import java.util.List;

import android.app.ActionBar;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.LayoutInflater;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.EditText;

import android.widget.ImageButton;

import android.widget.ListView;

import android.widget.TextView;

public class MainActivity extends Activity {

 ImageButton button;

 EditText input;

 ListView task_list_view;

 List<Aufgabe> tasks;

 AufgabeListAdapter adapter;

 ActionBar actionBar;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 tasks = new ArrayList<Aufgabe>();

 button = (ImageButton) findViewById

 (R.id.add_task_button);

 input = (EditText) findViewById(R.id.input_task);

 task_list_view = (ListView) findViewById

 (R.id.list_view);

 registerForContextMenu(task_list_view);

 adapter = new AufgabeListAdapter(tasks, this);

 task_list_view.setAdapter(adapter);

Listing 5: Die Klasse MainActivity der App (Teil 1)

103www.webundmobile.de  1.2016

Android Studio Mobile Development

erfolgt über die Methode des Interfaces android.widget.List

Adapter auf einen Adapter und die durch ihn bereitgestellten

Daten.

Jetzt benötigen Sie nur noch eine Klasse, die aus den Auf-

gaben die Einträge für die Liste vornimmt, die in der ListView

angezeigt werden sollen.

Java-Klasse anlegen
Die Liste soll hierbei ganz einfach in eine ArrayList gespei-

chert werden. Legen Sie hierfür eine weitere Java-Klasse mit

dem Namen AufgabeListAdapter an. Listing 6 zeigt, wie die

Implementierung aussehen sollte. Die Klasse erbt von Base

Adapter. Im Konstruktor werden die Aufgaben in eine Array-

List abgelegt. Die Methode getCount() liefert die Länge der

Liste und getItem() liefert das Element an einer bestimmten

Position.

Die Methode getView() baut aus den Daten des Modells

einen Eintrag zusammen und stellt ihn anschließend der

View-Instanz zur Verfügung. Mit Hilfe eines LayoutInflators

aus der XML-Datei (list_layout.xml) wird ein entsprechender

Komponentenbaum erzeugt und der Variablen convertView

zugewiesen.

Über die Methode setTag(holder) wird ein ViewHolder

übergeben. Er fungiert als Platzhalter, um später einfach und

effizient an die Elemente des Komponentenbaums zu gelan-

gen. Somit ist unsere App fertig.

Bild 3 zeigt die fertige App auf einem Samsung Smartpho-

ne als Einkaufsliste. Sie können somit die Strukturliste ganz

individuell einsetzen. Bild 4 zeigt das Abarbeiten der Liste

und das Abhaken der Einträge.

 break;

 }

 return super.onOptionsItemSelected(item);

 }

 public void deleteDoneTasks() {

 for (int i = 0; i < tasks.size(); i++) {

 if (tasks.get(i).isDone()) {

 tasks.remove(i);

 }

 }

 }

 @Override

 public void onCreateContextMenu(ContextMenu menu,

 View v, ContextMenu.ContextMenuInfo menuInfo) {

 super.onCreateContextMenu(menu, v, menuInfo);

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.context_menu, menu);

 }

 @Override

 public boolean onContextItemSelected(MenuItem

 item) {

 AdapterView.AdapterContextMenuInfo info =

 (AdapterView.AdapterContextMenuInfo)

 item.getMenuInfo();

 int position = (int) info.id;

 switch (item.getItemId()) {

 case R.id.context_delete:

 this.tasks.remove(position);

 this.adapter.notifyDataSetChanged();

 break;

 case R.id.context_edit:

 createEditDialog(tasks.get(position));

 break;

 }

 return super.onContextItemSelected(item);

 }

 public void createEditDialog(final Aufgabe task) {

 LayoutInflater li =

 LayoutInflater.from(MainActivity.this);

Listing 5: Die Klasse MainActivity der App (Teil 3)

 View dialogView =

 li.inflate(R.layout.edit_layout, null);

 AlertDialog.Builder alertDialogBuilder = new

 AlertDialog.Builder(MainActivity.this);

 alertDialogBuilder.setView(dialogView);

 final EditText inputText = (EditText)

 dialogView.findViewById(R.id.edit_input);

 inputText.setText(task.getTaskContent());

 final TextView dialogMessage = (TextView)

 dialogView.findViewById(R.id.edit_message);

 alertDialogBuilder

 .setCancelable(true)

 .setPositiveButton("Speichern",

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog,

 int id) {

 task.setTaskContent

 (inputText.getText().toString());

 adapter.notifyDataSetChanged();

 }

 })

 .setNegativeButton("Abbrechen",

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog,

 int id) {

 dialog.cancel();

 }

 });

 final AlertDialog alert =

 alertDialogBuilder.create();

 alert.show();

 }

}

Listing 5: Die Klasse MainActivity der App (Teil 4)

▶

104 1.2016  www.webundmobile.de

Android StudioMobile Development

Daniel Basler
ist Senior Consultant für Microsoft-Technolo-

gien und beschäftigt sich darüber hinaus mit

Datenbanken und Compiler-Bau.

import android.content.Context;

import android.graphics.Paint;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.BaseAdapter;

import android.widget.CheckBox;

import android.widget.CompoundButton;

import android.widget.TextView;

import java.util.List;

public class AufgabeListAdapter extends BaseAdapter

{

 private final List<Aufgabe> tasks;

 private final LayoutInflater inflator;

 private Aufgabe task;

 public AufgabeListAdapter(List<Aufgabe> tasks,

 Context context) {

 this.tasks = tasks;

 inflator = LayoutInflater.from(context);

 }

 public int getCount() {

 return tasks.size();

 }

 public Object getItem(int position) {

 return tasks.get(position);

 }

 public long getItemId(int position) {

 return position;

 }

 public View getView(final int position, View

 convertView, ViewGroup parent) {

 final AufgabeListAdapter.ViewHolder holder;

 if (convertView == null) {

 convertView = inflator.inflate

 (R.layout.list_layout, parent, false);

 holder = new AufgabeListAdapter.ViewHolder();

 holder.task_view = (TextView)

 convertView.findViewById(R.id.list_task_view);

 holder.done_box = (CheckBox)

 convertView.findViewById(R.id.list_checkbox);

 convertView.setTag(holder);

 } else {

 holder = (AufgabeListAdapter.ViewHolder)

 convertView.getTag();

 }

Listing 6: Die Klasse AufgabeListAdapter (Teil 1)

Fazit
Mit Android Studio macht das Entwickeln von App einfach

Spaß. Die speziell für Android ausgelegte IDE unterstützt die

tägliche Arbeit und die Entwicklung von Apps durch ihre in-

tuitive Bedienung sehr gut. Alle Funktionen sind klar geglie-

dert und ohne großen Einarbeitungsaufwand nutzbar. Auch

der Layout-Editor und das IntelliSense sind ein großer Ge-

winn. Die Beispiel-App lässt sich ganz individuell erweitern

und verbessern. Nutzen Sie neue und eigene Komponenten,

speichern Sie die Werte in einer Datenbank oder als Datei.

Die gezeigten Implementierungen sind Standardimple-

mentierungen der Methoden und lassen sich deshalb ohne

Weiteres auf andere Apps oder Activities übertragen.� ◾

 task = (Aufgabe) getItem(position);

 holder.done_box.setOnCheckedChangeListener(new

 CompoundButton.OnCheckedChangeListener() {

 public void onCheckedChanged(CompoundButton

 buttonView, boolean isChecked) {

 tasks.get(position).setIsDone(isChecked);

 if (isChecked) {

 holder.task_view.setPaintFlags

 (holder.task_view.getPaintFlags() |

 Paint.STRIKE_THRU_TEXT_FLAG);

 } else {

 holder.task_view.setPaintFlags(0);

 }

 }

 });

 holder.task_view.setText(task.getTaskContent());

 holder.done_box.setChecked(task.isDone());

 return convertView;

 }

 static class ViewHolder {

 TextView task_view;

 CheckBox done_box;

 }

}

Listing 6: Die Klasse AufgabeListAdapter (Teil 2)

href

href
01000100

0101011101
011000

if

div

{ }

string

{ }

DWX
20.-23. Juni 2016
Messe Nürnberg

developer-week.de DeveloperWeek

Jetzt Aussteller
werden!

Aussteller & Sponsoren 2015/2016:

Veranstalter: Präsentiert von:

106 1.2016  www.webundmobile.de

HTTPBackend

Der Standard für die Kommunikation von Systemen über

HTTP ist die Bibliothek libcurl. Diese ist recht mächtig,

aber nicht leicht zu beherrschen. Darum gibt es für PHP-Pro-

grammierer eine Zusatzbibliothek, die eine saubere Abstrak-

tion dazu zur Verfügung stellt.

Die PHP-Version der Bibliothek libcurl ist für die meisten

Programmierer ausreichend, wenn sie in ihren Programmen

einen Request zu einem anderen Server ausführen müssen.

Doch jenseits der einfachen GET-Abfragen lauern schnell die

Untiefen von libcurl. Das richtige Zusammenspiel der vielen

Optionen, mit denen man per curl_setopt() das Verhalten

steuern kann, ist kein Vergnügen, sofern man zum Beispiel

eine REST-Schnittstelle ansprechen oder andere Besonder-

heiten nutzen möchte.

Mit httpful kommt da Erlösung in Sicht: Diese klassenori-

entierte Bibliothek vereinfacht die Arbeit deutlich, und der

dabei verwendete Code ist auch noch viel besser verständli-

cher als der bei libcurl.

httpful in ein Projekt integrieren
Möchten Sie nur schnell in httpful einsteigen, ist der einfach

ste Weg die Nutzung des PHAR-Archivs, das Sie herunter

laden und in Ihre Programme einbinden:

include 'httpful.phar';

Bei Verwendung von Composer fügen Sie entweder in der

composer.json folgende Zeile zum Abschnitt require hinzu:

"nategood/httpful": "*"

Oder Sie laden httpful per Kommandozeile, etwa mittels:

composer require nategood/httpful

Wenn dann noch der mit Composer kommende Autoloader

eingebunden ist, können Sie die Klassen von httpful direkt

nutzen. Sollten Sie von Composer die Fehlermeldung erhal-

ten, dass die libcurl-Library für PHP fehlt, dann müssen Sie

das entsprechende Modul nachinstallieren. Auf Ubuntu be-

ziehungsweise Debian zum Beispiel per:

sudo apt-get install php5-curl

Immer mehr Systeme müssen miteinander

per HTTP kommunizieren.

Leichter ins Gespräch
kommen

Request-Bibliothek httpful

Zunächst soll einfach nur die Startseite von Spiegel Online

abgerufen werden. Der Code dazu sieht so aus:

include "vendor/autoload.php";

$url= "http://www.spiegel.de/";

$response = \httpful\Request::get($url) ->send();

Das zurückgelieferte Objekt ist vom Typ httpful\Response

und ist schön aufgeräumt: Die Property body bietet einfach

den zurückgelieferten Inhalt, hier eben den HTML-Quelltext

der Spiegel-Seite. In der Eigenschaft code finden Sie den

HTTP-Antwortcode des Servers.

Die Eigenschaft headers beinhaltet ein Array der verschie-

denen, vom Server gesetzten Header. Um beispielsweise die

Cache-Vorgaben herauszufinden, schreiben Sie

echo "Typ: " . $response

->headers['cache-control'];

Auch den Typ und den Zeichensatz des body finden Sie im

Array headers über den bekannten Schlüssel content-type.

Das Antwort-Objekt liefert allerdings beide Werte schön se-

pariert direkt als einzelne Properties:

echo "Typ " . $response->content_type;

echo "Zeichensatz " . $response->charset;

Möchten Sie vor der weiteren Verarbeitung zunächst feststel-

len, ob die Server-Antwort einen Fehlerzustand mitteilt, nut-

B
ild

: s
hu

tt
er

st
oc

k@
D

oo
de

r

107www.webundmobile.de  1.2016

HTTP Backend

zen Sie die Helper-Funktion hasError(). Um zu

testen, ob der Body mit Leben gefüllt ist, befra-

gen Sie stattdessen hasBody(). Schließlich lie-

fert das Antwort-Objekt auch noch sein Gegen-

stück, also das zum Abruf verwendete Request-

Objekt sowie einige Metadaten, wie etwa IP-

Adresse und Port des Servers oder gestoppte

Messwerte für das Timing der HTTP-Abfrage.

Mit einem API sprechen
Das erste Beispiel war für httpful natürlich nur

ein Klacks und hätte im Prinzip genauso mit

den Bordmitteln von PHP (file_get_contents()

mit dem URL als Parameter) erledigt werden

können. Als Nächstes soll deshalb ein richtiges

API angesprochen werden. GitHub besitzt eine

REST-Schnittstelle, die man ohne Anmeldung

ansprechen darf. Dieses API soll Ihnen etwas zu

Rasmus Lerdorf, dem Vater von PHP, erzählen.

$url = "https://api.github.com";

$url .= /users/rlerdorf/repos";

$response = \httpful\Request::get($url)

 ->expectsJson()

 ->send();

echo "<h1>Github-Projekte von Rasmus Lerdorf</h1>";

// Antwort auswerten

foreach($response->body as $repo){

 if (!$repo->fork){

 echo "<h3>{$repo->name}</h3> {$repo

 ->description}";

 }

}

Der wichtigste Unterschied zu vorhin liegt in der Gestaltung

der Anfrage. Hier wird dem Request-Objekt mittels eines

eingefügten expectsJson() mitgeteilt, dass eine Antwort im

JSON-Format erwartet wird.

Die Wirkung dieser Einstellung besteht darin, dass die Bi-

bliothek nach dem Erhalt der Antwort ein Parsing durchführt.

Als Folge ist body nicht einfach ein String wie zuvor, sondern

eine Datenstruktur in Objektform.

In diesem Fall liefert der Aufruf ein Array aller Repositories

des angesprochenen GIT-Eigentümers zurück, in der jedes

Element Properties des jeweiligen Repositorys enthält, wie

Namen, Beschreibung, URL et cetera.

Wie die Struktur des Bodys aussieht, hängt also immer vom

API und dem jeweiligen Aufruf ab. Sie können den Aufbau

entweder der API-Dokumentation entnehmen oder machen

einfach testhalber eine Abfrage und lassen sich das Ergebnis

dann mittels folgender Zeile anzeigen:

var_dump($response->body)

Weil im Beispiel nur die eigenen Projekte des Autors ange-

zeigt werden sollen, nicht aber diejenigen, die nur ein Fork

eines anderen Repositorys sind, wurde eine entsprechende

Abfrage auf $repo->fork eingebaut (Bild 1).

Auf Content-Typen reagieren
Der im vorigen Skript per expectsJson() eingefügte Hinweis

auf den Typ der zurückgelieferten Daten hat natürlich noch

einige Kollegen. So können Sie unter anderem auch XML,

YAML und CSV-Daten nutzen und schreiben dann entspre-

chend expectsXml() oder expectsYaml() (Bild 2).

Sie könnten den Fingerzeig auf den Inhaltstyp auch ganz

weglassen. Dann orientiert sich httpful einfach am Header-

Feld content-type in der HTTP-Antwort. Damit wäre Ihr

Codeschnipsel flexibler, weil er selbstständig auf die geliefer-

ten Daten reagiert.

Die Variante, den Typ festzuklopfen, ist dann notwendig,

wenn der Inhaltstyp nicht korrekt geliefert wird oder man lie-

ber einen Fehler erhalten möchte, wenn der erwartete Typ

nicht kommt. Würden Sie zum Beispiel den Typ per ex-

pectsXml() festlegen, aber JSON-Daten bekommen, dann

kracht es im verwendeten XML-Parser und er wirft eine Ex-

ception mit einem Fehlerhinweis wie Unable to parse respon-

se as XML.

Bislang waren alle Beispiele reine Leseabfragen mittels der

HTTP-Methode GET. Die Bibliothek httpful unterstützt aber

selbstverständlich auch die anderen Methoden POST,

REST/JSON: Das zweite Beispiel fragt per REST/JSON Repositories

eines GitHub-Autors ab (Bild 1)

MIME-Typen: Mit diesen MIME-Typen kann httpful umgehen und wandelt die

empfangenen Daten selbstständig in passende Datenstrukturen um (Bild 2)

▶

108 1.2016  www.webundmobile.de

HTTPBackend

PUT, DELETE, HEAD und OPTIONS. Zur Auswahl der ge-

wünschten Variante schreiben Sie diese einfach statt ::get()

an die Stelle, an welcher der Request erzeugt wird. Um bei-

spielsweise eine Ressource zu löschen, verwenden Sie den

folgenden Befehl:

$response = \httpful\Request::delete($url)

Die schreibenden HTTP-Methoden wie POST (Ressourcen

anlegen) oder PUT (Ressourcen aktualisieren) erfordern, dass

Sie Daten mitsenden. Dazu bietet die Library die Methode

body(), die Sie in die Aufrufkette miteinflechten.

Nutzdaten mitsenden
Angenommen, Sie senden an ein API ein Update eines Arti-

kels, der einen neuen Preis und Lagerbestand erhalten soll.

Das API spricht XML. Dann kann der zugehörige Aufruf so

aussehen:

$url = "http://myapi.xy/artikel/123";

$daten="<xml>

 <price>29.99</price>

 <amount>999</amount>

</xml>";

$response = \httpful\Request::put($url)

 ->body($daten)

 ->sendsXml()

 ->send();

Die Methode sendsXml() sorgt einerseits dafür, dass der In-

haltstyp für die Anfrage korrekt gesetzt wird, und führt bei

Bedarf eine automatische Umwandlung der Daten durch:

Wenn Sie dem Aufruf von body() keinen XML-String, son-

dern ein assoziatives Array als Parameter mitgeben, dann

wandelt httpful die Daten automatisch in XML um. Das klappt

genauso mit JSON und im Prinzip auch mit CSV.

Bei Verwendung von sendsCsv() müssen die Daten als

zweidimensionales Array geliefert werden. Dabei drückt die

eine Dimension die Zeilen aus und die andere die Werte in-

nerhalb der Zeilen. Wenn Sie also etwa einem API die Liefe-

rung von Büroartikeln mitteilen möchten, könnte das folgen-

dermaßen aussehen:

$url = "http://myapi.xy/lieferung";

$daten=[

 ['artikelnr'=>'9981','menge'=>25,'name'=>

 'Radiergummi'],

 ['artikelnr'=>'2312','menge'=>100,'name'=>

 'Mine 0,7 mm'],

 ['artikelnr'=>'0081','menge'=>10,'name'=>

 'Druckerpapier A4']

];

$response = \httpful\Request::post($url)

 ->body($daten)

 ->sendsCsv()

 ->send();

Die Library macht dann daraus in der Anfrage den folgenden

Inhalt:

artikelnr,menge,name

9981,25,Radiergummi

2312,100,"Mine 0,7 mm"

0081,10,"Druckerpapier A4"

Sie sehen, dass die Headerzeile automatisch aus den Schlüs-

selnamen des Unterarrays gebildet wurde. Die Felder werden

nur dort mit Anführungszeichen umgeben, wo es nötig ist.

So erledigen Sie einen Datei-Upload
Das Versenden einer Datei über einen File-Upload passiert ja

im Browser über ein spezielles Formularfeld und enctype=

multipart/form-data. Sie müssen sich mit httpful weder um

dieses Attribut kümmern noch für das passende Format des

Inhalts der gewünschten Datei sorgen.

Diese Arbeiten nimmt Ihnen die Bibliothek ab.

Sie nutzen lediglich die Methode attach(), die als

Parameter ein assoziatives Array mit den Datei-

Informationen erwartet. Hier ein Beispiel:

$url = "http://myserv.de/upload.php";

$response = \httpful\Request::post($url)

 ->attach(["myfile1"=>"/files/pic.jpg"])

 ->send();

Dabei entspricht der Schlüsselname im Array dem

Namen, den das Input-Feld im Formular auf der

Webseite besitzt. Das obige Skript würde also die-

selbe Wirkung haben wie folgende Zeile in einem

Upload-Formular:

<input name="myfile1" type="file">Eigener Parser: httpful bietet die Möglichkeit, einen individuellen Parser zu

registrieren (Bild 3)

109www.webundmobile.de  1.2016

HTTP Backend

Wenn Sie mehrere Dateien hochladen möchten, dann erwei-

tern Sie das Array einfach entsprechend:

->attach([

 "myfile1"=>"/files/pic.jpg",

 "myfile2"=>"/files/logo.jpg"

])

httpful unterstützt einerseits die Basic Authentication, also

die Methode, die im Browser zu dem Aufploppen des kleinen

Fensters mit den Feldern für Username und Kennwort führt.

Authentifizierung und SSL
Dazu fügen Sie einfach die Methode authenticateWithBasic()

hinzu, die Login und Passwort als Parameter erwartet. Hier

etwa ein JSON-Aufruf mit einer solchen Anmeldung:

$response = \httpful\Request::get($url)

 ->sendsJson()

 ->authenticateWithBasic('user', 'pw')

 ->body('{"foo":"bar"}')

 ->send();

Aber diese altbekannte Methode ist nicht die einzige Varian-

te, die httpful beherrscht. Über authenticateWithCert() kön-

nen Sie auch Client-seitige Zertifikate verwenden. Dazu wer-

den Name und Pfad des Key-Files und des Cert-Files sowie

optional noch ein Kennwort übergeben. Ansonsten funktio-

niert die Verwendung genauso wie mit authenticateWithBa-

sic() im vorangegangenen Beispiel.

Falls Sie per HTTPS einen Server ansprechen, ist das ein-

fach mit der Verwendung von https:// als Protokoll im URL

getan. Hat der Server allerdings SSL-Probleme, wie etwa ein

selbstausgestelltes oder abgelaufenes Zertifikat, wird httpful

mit einem Fehler abbrechen. Um der Bibliothek ein ent-

spannteres Verhältnis zum Thema Sicherheit vorzugeben,

verwenden Sie in der Aufrufkette die Methode without-

StrictSSL().

Falls Sie einen Proxy für Ihre Abfragen einsetzen möchten

oder müssen, genügt es, beispielsweise ->useProxy("172.16.

0.254", 8888) in Ihre Anfrage einzubauen.

So senden Sie spezielle Header
Wenn Sie dem Server zur Anfrage zusätzliche Header mitge-

ben wollen, können Sie unter verschiedenen Syntaxvarian-

ten wählen.

Angenommen, Sie möchten bewirken, dass der Header

X-My-Header mit dem Wert MyValue dem Aufruf hinzuge-

fügt wird. Dann bauen Sie in den Aufruf zum Beispiel

->withXMyHeader("MyValue") ein.

Die Library arbeitet mit Magischen Methoden, holt sich

also den angesprochenen Methodennamen, baut ihn zum

Headerschlüssel X-My-Header um und setzt als Wert den als

Parameter genannten String.

Falls Ihnen das zu magisch ist, können Sie auch die Metho-

de addHeader() einsetzen, die Schlüssel und Wert als se-

Die Online-Referenz der Bibliothek erklärt übersichtlich alle Klassen, Methoden und Parameter von httpful (Bild 4)

▶

110 1.2016  www.webundmobile.de

HTTPBackend

parate Parameter annimmt und den Schlüssel in seiner ferti-

gen Variante erwartet. Folgende Variante wäre also gleich-

wertig zur Magischen Methode:

->addHeader("X-My-Header","MyValue")

Mit Hilfe der Methode addHeaders() können Sie auch meh-

rere Header auf einmal setzen. Diese übergeben Sie dann als

assoziatives Array:

->addHeaders([

 "X-My-Header1","foo"),

 "X-My-Header2","bar")

])

Es gibt Fälle, wo Sie selbst einen Parser schreiben möchten,

etwa, wenn Sie auf einen Inhaltstyp stoßen, der nicht abge-

deckt ist, oder wenn der Datenlieferant von der unterstützten

Syntax abweicht.

So integrieren Sie einen eigenen Parser
Dazu bietet httpful die Möglichkeit, einen individuellen Par-

ser zu registrieren. Der muss als Klasse gestaltet sein, die von

MimeHandleAdapter abgeleitet ist:

class MyCsvHandler extends

\httpful\Handlers\MimeHandlerAdapter{

 ...

}

Damit Ihre Variante von httpful verwendet wird, registrieren

Sie sie unter dem gewünschten MIME-Typ:

\httpful\httpful::register('text/csv',

new MyCsvHandler());

Die mitgelieferten Beispiele enthalten genau einen solchen

Fall. Sie finden den Code im Unterverzeichnis vendor/nate

good/httpful/examples. Manche Sonderwünsche beherr-

schen allerdings schon die eingebauten Parser. Möchten Sie

beispielsweise bei einer JSON-Antwort die Daten lieber als

assoziatives Array erhalten, können Sie dies über einen Zu-

satzparameter dem normalen Handler mitteilen. Dazu wird er

nach folgendem Muster neu registriert:

\httpful\httpful::register(

 'application/json', new \httpful\Handlers\JsonHandler(

 array('decode_as_array' => true))

);

Die Dokumentation von httpful gibt noch einige Beispiele für

einen anderen Ansatz für eigenes Parsen. Dabei wird die Me-

thode parseWith() verwendet, die als Parameter eine Closu-

re, also eine anonyme Funktion, erwartet, die die Daten parst

(Bild 3).

So legen Sie Vorlagen für Abfragen an
Wenn Sie im selben Skript mehrere Abfragen zum selben

Server durchführen müssen, ist es praktisch, die Template-

Funktion von httpful zu nutzen. Dabei setzen Sie einmalig die

gewünschten Vorgaben, und jeder neue Request verwendet

diese dann. Das Template wird zum Beispiel so definiert und

bekannt gemacht:

use httpful\Request;

$template = Request::init()

 ->withoutStrictSsl()

 ->expectsXml()

 ->sendsXml();

Request::ini($template);

Um die Vorgabe zu nutzen, schreiben Sie wie gewohnt:

$response = request::get($uri)

 ->body($daten)

 ->send();

Nur werden eben alle zuvor gemachten Vorgaben für SSL

und den Inhaltstyp XML übernommen. Möchten Sie eine der

Vorgaben für einen Aufruf überschreiben, fügen Sie die ent-

sprechende Methode in den Aufruf ein. Das Template bleibt

davon unberührt.

Fazit
httpful bietet eine objektorientierte Abstraktion für die Funk-

tionen der libcurl-Library von PHP (Bild 4). Durch eine saube-

re OOP-Strukturierung und praktikable Syntax kommt man

mit httpful schnell zum Ergebnis.� ◾

Markus Schraudolph
ist Software-Entwickler, Autor von Fachbü-

chern und Berater. Seine Schwerpunkte sind

Webentwicklung und Webtechnologien.

�� �Homepage des Projekts httpful
http://phphttpclient.com

�� �Strukturierte API-Dokumentation des Projekts
http://phphttpclient.com/docs

�� �GitHub-Repository von httpful
https://github.com/nategood/httpful

�� �Alternatives Projekt, das sprachübergreifend arbeitet, aber
eine weniger elegante Syntax hat
http://unirest.io

Links zum Thema

111www.webundmobile.de  1.2016

ImpressumMitarbeiter dieser Ausgabe

Impressum

Verlag
Neue Mediengesellschaft Ulm mbH
Bayerstraße 16a,
80335 München
Telefon: (089) 741 17-0,
Fax: (089) 741 17-101
(ist zugleich Anschrift aller
Verantwortlichen)

Herausgeber
Dr. Günter Götz

Chefredakteur
Max Bold
– verantwortlich für
den redaktionellen Teil –
E-Mail: redaktion@webundmobile.de

Schlussredaktion
Ernst Altmannshofer

Redaktionelle Mitarbeit
Philip Ackermann, Osvaldo Aguilar,
Daniel Basler, Christian Bleske,
Siegfried Bolz, Ekkehard Gentz, Tam Hanna,
Johannes Hoppe, Bernhard Lauer,
Patrick Lobacher, Florence Maurice,
Stephan Pohl, Michael Rohrlich,
Michael Schams, Jochen Schmidt,
Markus Schraudolph, Alexander Schulze,
Katharina Sckommodau,
Norbert Sendetzky, Thomas Sillmann,
Alexander Steireif, Gregor Woiwode

Art Directorin
Maria-Luise Sailer

Grafik & Bildredaktion
Alfred Agatz, Dagmar Breitenbauch,
Catharina Burmester, Hedi Hefele,
Manuela Keller, Simone Köhnke,
Cornelia Pflanzer, Petra Reichenspurner,
Ilka Rüther, Christian Schumacher,
Nicole Üblacker, Mathias Vietmeier

Anzeigenberatung
Jens Schmidtmann, Anzeigenleiter
Klaus Ahlering, Senior Sales Manager
Telefon: (089) 741 17-125
Fax: (089) 741 17-269
E-Mail Anzeigenberatung: sales@nmg.de

Anzeigendisposition
Dr. Jürgen Bossmann
Telefon: (089) 741 17-281
Fax: (089) 741 17-269
E-Mail: sales@nmg.de

Leitung Herstellung/Vertrieb
Thomas Heydn
Telefon: (089) 741 17-111
E-Mail: thomas.heydn@nmg.de

Leserservice
Hotline: (089) 741 17-205

Fax: (089) 741 17-101

E-Mail: leserservice@nmg.de

Kooperationen

Denis Motzko

Telefon: (089) 741 17-116

E-Mail: kooperationen@nmg.de

Druck

L.N. Schaffrath Druckmedien

Marktweg 42–50

47608 Geldern

CD-Produktion
Stroemung GmbH

Vertrieb
Axel Springer Vertriebsservice GmbH

Objektvertriebsleitung Lothar Kosbü

Süderstraße 77

20097 Hamburg

Telefon: (040) 34724857

Bezugspreise

web & mobile developer ist das

Profi-Magazin für Web- und

Mobile-Entwickler und erscheint

zwölfmal im Jahr. Der Bezugszeitraum

für Abonnenten ist jeweils ein Jahr.

Der Bezugspreis im Abonnement

beträgt 76,20 Euro inklusive Versand

und Mehrwertsteuer im Halbjahr, der

Preis für ein Einzelheft 14,95 Euro.

Der Jahresbezugspreis beträgt damit

152,40 Euro.

In Österreich sowie im übrigen Ausland

kostet das Abonnement 83,70 Euro im

Halbjahr. Der Jahresbezugspreis beträgt

somit 167,40 Euro. In der Schweiz kostet

das Abonnement 152,00 Franken im

Halbjahr. Der Jahresbezugspreis in der

Schweiz beträgt 304,00 Franken.

Das Abonnement verlängert sich

automatisch um ein Jahr, wenn es

nicht sechs Wochen vor Ablauf der

Bezugszeit schriftlich beim Verlag

gekündigt wird.

Studenten erhalten bei Vorlage eines

Nachweises einen Rabatt von 50 Prozent.

ISSN: 2194-4105

© 2015 Neue Mediengesellschaft Ulm mbH

Jetzt Ihre
web & mobile developer
auf dem iPad lesen

„Moderne Probleme
fordern modernes

Wissen. Mit Webinaren
bleibt man auf

dem neuesten Stand.“

Jetzt online
weiterbilden!

WWebinare

developer-media.de/webinare

Johannes Hofmeister
Softwareentwickler,

Psychologe, Sprecher

112 1.2016  www.webundmobile.de

E-CommerceBackend

Magento stand in den letz-

ten Wochen und Mona-

ten nicht wegen der Software

und der seit Langem angekün-

digten neuen Version im Fokus

vieler Diskussionen. Schlagzei-

len wurden in erster Linie we-

gen des Verkaufs von Ebay

Enterprise gemacht, jenes

Businessbereichs innerhalb

des Ebay-Konzerns, zu dem

Magento zählt. Zukunftsdis-

kussionen wurden in erster Li-

nie aufgrund der Unterneh-

mensstruktur und des neuen

Eigentümers geführt, nicht

aber wegen der Software Ma-

gento und deren Zukunftsaus-

sichten.

Dies ist umso ärgerlicher, als

mit Magento 2 in wenigen Mo-

naten eine neue Version der populären E-Commerce-Lösung

veröffentlicht wird, die komplett mit ihrem Vorgänger bricht.

Es wird der erste harte Schnitt in der Historie von Magento

werden: Abwärtskompatibilität, ein komplett neuer techno-

logischer Unterbau und eine ganz neue Art und Weise, Mo-

dule und Themes zu entwickeln, sind die eigentlichen The-

men, mit denen sich Magento-Shop-Betreiber, Front- sowie

Backend-Entwickler und E-Commerce-Entscheider beschäf-

tigen müssen.

Doch worin liegen letztendlich die Unterschiede und Neue

rungen im Detail, und wird Magento 2 wirklich so gut wer-

den, wie viele Magento-Enthusiasten es sich erhoffen?

Die lange Historie von Magento 2
Magento 2 als Vaporware zu bezeichnen, wäre an dieser Stel-

le vielleicht etwas zu vermessen. Aber das spielt speziell für

die Betrachtung der verwendeten Technologien eine wichti-

ge Rolle. Es ist unbestritten, dass Magento 2 mit vielen Ver-

schiebungen zu kämpfen hatte und dadurch an der ein oder

anderen Stelle technologisch etwas hinterherhinkt.

Erstmalig angekündigt wurde Magento 2 im Jahr 2010, al-

so vor mehr als fünf Jahren. Ein erster anvisierter Veröffent-

lichungstermin wurde nach Ankündigung der Version 2 mit

Ende 2011 angegeben. Doch dann kam genau in diesem Zeit-

raum Ebay und kaufte kurzerhand Magento auf, und es ent-

stand, zumindest gefühlt, eine Entschleunigung, speziell in

Bezug auf die angekündigte Version 2.

Es gibt eine neue, komplett überarbeitete Version der populären E-Commerce-Lösung.

Evolution im Detail
E-Commerce-Software Magento 2

Nach etlichen Verzögerungen, Verschiebungen und Um-

planungen hatte man als groben Release-Termin das Ende

2014 bekanntgegeben. Wie man heute weiß, handelte es sich

auch hierbei um ein Datum, das nicht gehalten werden konn-

te. Im Jahr 2015 nahm das Veröffentlichungsdatum von Ma-

gento 2 konkretere Züge an, eine erste Beta-Version steht be-

reits auf GitHub (https://github.com/magento) bereit, und

sollte nichts mehr dazwischenkommen, wird Magento 2 En-

de 2015 endlich das Licht der Welt erblicken.

Zwischen der Ankündigung und der finalen Veröffentli-

chung von Magento 2 werden über fünf Jahre liegen, eine

enorm lange Zeit im E-Commerce. Diese Verzögerungen

können für die Zukunft von Magento zwei unterschiedliche

Gefahren bedeuten:

Zum einen steckt in Magento 2 Technologie, die heute

nicht mehr ganz als State of the Art anzusehen ist oder zu der

einfach bessere Alternative bereitstehen. Dazu zählt ganz

konkret die Nutzung des Zend Frameworks in der Version 1.

Hierüber sind bereits im Internet Diskussionen entbrannt, die

das Für und Wider thematisieren. Dennoch: Zieht sich die

Entwicklung einer Software über einen zu langen Zeitraum

hin, wird man zwangsläufig Gefahr laufen, auf Technologien

gesetzt zu haben, die nach dem Veröffentlichungstermin be-

reits Nachfolger haben oder gegenüber denen sich schlicht

und einfach bessere Alternativen hervorgetan haben.

Neben dem technologischen Aspekt haben die Macher von

Magento Vertrauen zerstört, das in letzter Zeit wieder mühe-

Alles neu: Magento hat für die Version 2 das Backend komplett umgestaltet (Bild 1)

113www.webundmobile.de  1.2016

E-Commerce Backend

voll aufgebaut wird. Letztendlich wissen Shop-Betreiber seit

Jahren nicht exakt, wann Magento 2 veröffentlicht wird. Bei

der Wahl einer E-Commerce-Plattform spielt die Planungs

sicherheit jedoch eine äußerst wichtige Rolle. In Projekten im

großen sechsstelligen Bereich – also gerade diejenigen, die

Magento eigentlich adressieren möchte – ist es von Bedeu-

tung, ob in wenigen Monaten eine komplett neue Version der

Software veröffentlicht wird oder eben nicht. Denn die Pla-

nungssicherheit in Projekten ist zum Teil auch ein Kriterium

für die Wahl des Software-Anbieters. Hier bestand in der Ver-

gangenheit definitiv ein Mangel in der Transparenz und

Kommunikation.

Speziell aus diesen Gründen sind es vielleicht nicht die bes-

ten Voraussetzungen, die Magento 2 mit sich bringt. Die His-

torie kann auch nicht bereinigt werden. Was jedoch zu sehen

und zu spüren ist, sind die Bemühungen von Magento, die

Fehler der Vergangenheit zu korrigieren und hier, speziell in

Sachen Kommunikation und Transparenz, einen anderen

Weg einzuschlagen.

Das bedeutet Magento 2
Vergleicht man die Entwicklung von Magento 2 mit der mitt-

lerweile populären E-Commerce-Lösung Shopware, so lässt

sich ein großer Unterschied feststellen. Shopware setzt seit ei-

nigen Versionen konstant auf die Entwicklung neuer Funktio

nen und Möglichkeiten für Shop-Betreiber, gepaart mit tech-

nologischen Anpassungen.

Magento 2 hingegen wird vor allem durch Änderungen in

der Code-Struktur und dem Verborgenen glänzen. Oder an-

ders formuliert: Shop-Betreiber, Administratoren und E-Com-

merce-Entscheider werden bei der Version 2 von Magento

voraussichtlich nicht so hoch jubeln, da sich für sie, abgesehen

von optischen Anpassungen, relativ wenig ändert. Die Fea-

tures, die in der momentanen Community- beziehungsweise.

Enterprise-Edition vorhanden sind, werden auch in Magento

2 vorhanden sein. Nicht mehr, aber auch nicht weniger.

Das bedeutet aber wiederum: In Magento 2 wird sich eine

Menge ändern, vieles ist aber für das Auge gar nicht sichtbar.

So setzt Magento 2 auf CSS3, HTML5, LESS, RequireJS,

Composer, PHP 5.5, MySQL 5.6, das Zend Framework 1 und

jQuery. Die Performance wurde stark optimiert und der Code

wird endlich automatisiert testbar sein. Ergänzt wird dies

durch eine umfangreiche Dokumentation, die für jedermann

verfügbar sein wird. So bringt Magento viele Veränderungen

und Weiterentwicklungen, aber diese beziehen sich größten-

teils auf das Innenleben.

Ein neues Backend für mehr Übersicht
Die für Shop-Betreiber vermutlich auffallendste Neuerung ist

das neu gestaltete Magento-Backend. Der Administrations-

bereich erscheint dabei nicht nur in einer gänzlich veränder-

ten Optik, auch die Strukturierung der Menüpunkte wurde

komplett überarbeitet. Einziger Wermutstropfen: Das Back

end ist in dieser Form auf mobilen Endgeräten wie Tablets

nur mit etwas Mühe nutzbar. Ein responsive Backend-Design

wäre meiner Meinung nach auf jeden Fall ein interessanter

USP gewesen.

Ist das alte Magento an der ein oder anderen Stelle unlo-

gisch aufgebaut, bietet Magento 2 eine wesentlich bessere

Übersichtlichkeit.

Dreh- und Angelpunkt des Backends ist die Hauptnaviga

tion, die sich im linken Seitenrand befindet und sich in fol-

gende Punkte untergliedert: Dashboard, Verkäufe, Produkte,

Kunden, Marketing, Inhalt, Berichte, Stores und System.

Der Einstiegspunkt in das Backend ist das Dashboard. Die-

ses ist bereits aus Magento 1 bekannt und bietet für Shop-Be-

treiber eine schnelle und einfache Übersicht über unterneh-

menskritische Daten. Dazu zählen beispielsweise die letzten

Bestellungen, der aktuelle Umsatz und Informationen zu

Kunden und Produkten. Dieser Bereich bietet wenig Neues,

auch wenn die Übersichtlichkeit durch das neue Design er-

höht wurde (Bild 1).

Im Punkt Verkäufe verbirgt sich die gesamte Funktionali-

tät, die für die Bearbeitung von Bestellungen benötigt wird.

Dazu zählen das Anlegen von Rechnungen und Lieferschei-

nen sowie die Bearbeitung von Bestellungen. Glücklicher- ▶

Die web & mobile developer verlost drei Handbücher
für angehende Betreiber eines Online-Shops.

Wenn Sie einen Online-Shop starten möchten, müssen

Sie vor dem Startschuss wichtige Entscheidungen tref-

fen: Welche E-Commerce-Software ist für Ihre Zwecke

am besten geeignet? Was müssen Sie bei Versandarten

sowie Bezahlungssystemen beachten? Und ganz ent-

scheidend: Was kostet Sie das? Mit dem umfassenden

»Handbuch Online-Shop« vom Autor dieses Artikels

erhalten Sie alles, was Sie für den Betrieb eines Online-

Shops benötigen: von den ersten Schritten über wichtiges Usabi

lity- und Marketing-Wissen bis hin zu wertvollen Tipps, damit Sie

rechtliche und buchhalterische Fallstricke vermeiden. So stellen

Sie sich den vielfältigen Herausforderungen

und Trends im E-Commerce.

web & mobile developer verlost drei

dieser nützlichen Ratgeber für angehende

Betreiber eines Online-Shops. Wenn Sie Inter-

esse haben und eines dieser E-Books gewin-

nen wollen, schicken Sie einfach eine E-Mail

mit dem Betreff »Magento-Verlosung« an

redaktion@webundmobile.de. Mit etwas Glück gehören Sie zu

den Gewinnern und können sich das E-Book herunterladen oder

online lesen. Der Rechtsweg ist ausgeschlossen.

Mitmachen und gewinnen

Diesen nützlichen Ratgeber

können Sie gewinnen

114 1.2016  www.webundmobile.de

E-CommerceBackend

weise wurde der Punkt mit der Steuerberechnung aus dem

Verkaufsbereich entfernt, ebenso wie die Verwaltung der Be-

stellbedingungen. Shop-Betreiber können Bestellungen wie

bereits in Version 1 bearbeiten, hier gibt es keinerlei Umstel-

lungen, die den Workflow betreffen.

Der in Magento 1 sehr umfangreiche Punkt Katalog wurde

komplett aufgetrennt. Der neu entstandene Bereich Produk-

te kümmert sich ausschließlich um den Produktkatalog und

bietet darüber hinaus keine weiteren Möglichkeiten, wie bei-

spielsweise die Verwaltung von Kommentaren, Ratings oder

Attribute.

Die Verwaltung der Produkte und Kategorien ist, bezogen

auf das Handling und den Funktionsumfang, im Prinzip iden-

tisch zur Vorgängerversion. Auch hier wurde letztendlich nur

an der Optik gearbeitet. Wer in Magento 1 bereits Produkte

und Kategorien verwaltet hat, wird auch in der neuen Version

damit keine Probleme haben.

Innerhalb der Kundenverwaltung sieht es ähnlich aus. Die-

ser Menüpunkt birgt, abgesehen von der Verwaltung der

Kundengruppen, keine Neuerungen.

Überarbeitet wurde hingegen der Bereich Marketing. Ne-

ben Preisregeln ist hier ebenso die Verwaltung von E-Mail-

Templates und Newslettern angesiedelt. Dieser Menüpunkt

beinhaltet alle in Magento vorhandenen Funktionen, die Ih-

nen als Shop-Betreiber bei der Generierung von Umsätzen

weiterhelfen. Hierzu zählen neben den Preisregeln und

E-Mail-Templates auch umfangreiche Möglichkeiten in Be-

zug auf Kundenbewertungen. Aber auch die Verwaltung der

URLs ist speziell für das Thema SEO ein wichtiger Punkt.

Ein Feature, welches ich mir seit Jahren wünsche, hat auch

in Version 2 keinen Einzug gefunden: ein Wysiwyg-Editor für

E-Mails. Wer bereits E-Mail-Templates in Magento erstellt

oder editiert hat weiß, dass dies nur mit HTML/CSS möglich

ist (Bild 2). Dies stellt speziell technisch unerfahrene Shop-Be-

treiber vor große Herausforderungen.

Im nächsten Menüpunkt Inhalte sind die Elemente aus

dem bereits aus Version 1 bekannten Bereich CMS zu finden.

Neben den Seiten und statischen Blöcken können innerhalb

dieses Bereiches Designänderungen verwaltet werden. Die-

se Zusammenfassung der Inhaltsbereiche ist definitiv sinn-

voll und erhöht die Übersichtlichkeit.

Die Berichte bieten einen Überblick über unternehmens-

kritische Zahlen. Fairerweise muss man an dieser Stelle er-

wähnen, dass die Berichte aber letztendlich auch in Version

1 von Magento keine allzu große Rolle spielen. Diese erset-

zen definitiv kein Webanalyse-Tool. Man kann sie nutzen,

aber man darf hier keine Wunder erwarten.

Spannend hingegen wird es definitiv in den letzten beiden

Menüpunkten, Stores und System. Innerhalb des Menü-

punkts Stores sind grundlegende Konfigurationsmöglichkei-

ten für den Online-Shop möglich. An dieser Stelle werden zu-

künftig Attribute und Kundengruppen verwaltet, Steuerre-

geln hinterlegt und Konfigurationsoptionen gepflegt. Der

Punkt Stores löst damit den enorm überfrachteten Punkt Kon-

figuration ein Stück weit ab und bietet eine zentrale Anlauf-

stelle, innerhalb derer alle Einstellungsmöglichkeiten durch-

geführt werden können.

Der Punkt System, den man auf den ersten Blick mit der

Konfiguration verwechseln könnte, bietet hingegen Funktio-

nen in Sachen Import/Export, Cache- und Index-Manage-

ment sowie Berechtigungen. Wer bislang in Magento 1 mit

dem enorm umfangreichen Punkt System und System, Konfi-

guration Übersichtlichkeitsprobleme hatte, wird sich als Fol-

ge dieser Neuerung definitiv besser zurechtfinden.

Bezogen auf das Backend bringt Magento 2 einen großen

Vorteil: Übersichtlichkeit. Diese wurde enorm gesteigert und

Verbesserungen und Optimierungen wurden im Detail durch-

geführt. Ein neues Design sorgt für einen zeitgemäßen und

wesentlich übersichtlicheren Eindruck, Menüpunkte wurden

logischer gruppiert und insgesamt wirkt das Backend nicht

mehr so stark überfrachtet wie

in Version 1. Wer jedoch auf

spannende neue Features hofft,

wird vom Backend enttäuscht

werden. Hier findet definitiv

eine Evolution und keine Revo-

lution statt.

Responsive Frontend 2.0
Neben dem Backend fährt Ma-

gento 2 mit einem komplett

überarbeiteten und neu gestal-

ten Frontend auf. Hier ist vor

allem die Technologie unter

der Haube interessant. So setzt

Magento standardmäßig auf

RequireJS, hat sich komplett

von Prototype verabschiedet

und setzt auf jQuery. In Sachen

CSS verwendet Magento zu-

künftig LESS. Dieser Punkt

sorgt im Übrigen speziell im In-

Tricky E-Mail Templates: Leider steht weiterhin kein grafischer Editor für Mail-Templates zur

Verfügung (Bild 2)

115www.webundmobile.de  1.2016

E-Commerce Backend

ternet für Diskussionen, gibt es doch sowohl auf Seiten von

Sass wie auch LESS Verfechter. Aufgrund der Stabilität hat-

te man zum damaligen Entwicklungszeitpunkt von Magento

beschlossen, auf LESS zu setzen.

Neben den rein technischen Änderungen tritt Magento 2

mit einem komplett neu entwickelten Standard-Theme na-

mens Luma an. Bei dem Luma-Theme handelt es sich um ein

minimalistisches, auf Usability optimiertes Responsive-De-

sign, das sich als Basis für eigene Designentwicklungen oder

Modifikationen nutzen lässt. Im Vergleich zum Design des

Vorgängers verfügt Luma über einen sehr reduzierten Kopf-

Bereich und eine komplett überarbeitete Startseite.

Hier arbeitet das Design standardmäßig mit einer Kachel-

optik und stützt sich dadurch primär auf in dem Vordergrund

stehende Grafiken. Auf Slider wurde gänzlich verzichtet. Al-

le Inhaltselemente sind durch Scrollen ersichtlich, es gibt kei-

ne versteckten oder verdeckten Inhalte,

die man erst aufklappen oder sliden

muss. Die Kacheloptik eignet sich spezi-

ell für mobile Endgeräte, da hier flexibel

mit der Anordnung beziehungsweise

Darstellung der Kacheln gespielt wer-

den kann. Abgeschlossen wird die Seite

mit einer Darstellung von Produkten so-

wie einem Footer (Bild 3).

Innerhalb der Kategorieansicht hat

sich, abgesehen von der Optik, nicht viel

geändert. Schade, denn bei der Filter

navigation hat man exakt dasselbe Pro-

blem, das schon seit Magento 1 besteht:

Wenn Sie innerhalb einer Kategorie eine

große Anzahl an Produkten darstellen,

möchten Ihre Kunden in der Regel die

Ergebnisse filtern, beispielsweise nach

dem Preis, einer Größe oder Farbe. Im

Modebereich ist es nicht unüblich, nach

mehreren Farben zu filtern – gegebe-

nenfalls möchte Ihr Kunde schließlich

alle schwarzen und dunkelblauen Pro-

dukte sehen.

Doch genau diese Mehrfachauswahl pro Eigenschaft ist lei-

der weiterhin nicht möglich und muss, wie auch in Version 1,

nachgerüstet werden. Speziell bei solchen Funktionen hätte

ich mir persönlich eine sinnvolle Weiterentwicklung des

Standard-Funktionsumfangs gewünscht.

Spannend und damit auch funktional eine der wenigen

Neuerungen ist der Bezahlvorgang. Denn dieser erfolgt,

gänzlich nach dem Muster von Amazon in einem sehr redu-

zierten Design. Der Kopf- und Fußbereich, der auf jeder vor-

herigen Seite zu sehen ist, verschwindet gänzlich und der

Online-Shop-Kunde kann seine Transaktion vollkommen un-

gestört von Ablenkungen durchführen.

Tatsächlich wurde der bislang als kompliziert titulierte und

oftmals durch Erweiterungen abgelöste Standard-Checkout

sinnvoll durch ein vom Design und von der Funktionalität her

bessere Variante ersetzt, die dem Besucher ein schnelles Ein-

kaufen ermöglicht (Bild 4).

Zusammengefasst bietet das neue Magento-Standard-

Theme namens Luma logische (Weiter-)Entwicklungen und

erscheint als State-of-the-Art-Design, mit dem man als Basis

definitiv arbeiten kann.

Unter der Haube gibt es eine ganze Reihe sinnvoller Er

gänzungen und Anpassungen. Insbesondere der Checkout

ist eine sehr gute Weiterentwicklung. Revolutioniert wurde

auch an dieser Stelle sicherlich nichts, aber speziell für den

schnellen Start eines E-Commerce-Projekts stellt das neue

Theme eine gute Basis dar.

Modul- und Template-Entwicklung
Shop-Betreiber werden durch das neue Backend auf ihre

Kosten kommen. Verwendet man das neue Luma-Theme, tut

man den eigenen Kunden etwas Gutes. Aber was bringt Ma-

gento 2 für Front- und Backend-Entwickler?

Die gute Nachricht zuerst: Magento versucht, mit einer

umfangreichen Dokumentation sowohl Frontend- als auch

Backend-Entwickler zu unterstützen. Das leidige Thema Do-

kumentation spielt vor allem in Version 1 eine große Rolle.

Unter http://devdocs.magento.com findet sich bereits um-

fangreiches Informationsmaterial zur neuen Magento-Ver

sion 2. Hier hat Magento definitiv aus den Fehlern der Ver-

gangenheit gelernt und ist gewillt, den Entwicklern alle nö-

tigen Informationen an einer zentralen Stelle bereitzustellen.

Für Frontend-Entwickler, die sich auf die Realisierung von

Themes konzentrieren, ändert sich mit Version 2 zuallererst

die Struktur bei der Theme-Entwicklung. Die Trennung zwi-

schen app/design und dem skin/-Verzeichnis wurde komplett

abgeschafft. Als zentrale Anlaufstelle dient, bezogen auf das

Frontend-Design, das Verzeichnis app/design/frontend. In-

nerhalb dieses Verzeichnisses wird ein Hauptverzeichnis und

innerhalb dessen ein weiteres Unterverzeichnis erstellt, zum

Beispiel app/design/frontend/meindesign/default. Diese

Luma-Theme: Das neue Design ist responsive und minimalistisch gehalten (Bild 3)

▶

116 1.2016  www.webundmobile.de

E-CommerceBackend

Trennung, in Magento 1 nannte es sich

Package und Theme, sollte für Frontend-

Entwickler bereits bekannt sein. Neu ist

hingegen die Struktur innerhalb des ei-

genen Design-Verzeichnisses. So muss

das Theme eine Struktur aufweisen, wie

sie in Bild 5 zu sehen ist. Tabelle 1 zeigt,

welche Bedeutung die einzelnen Ver-

zeichnisse haben.

Zu guter Letzt existieren zwei Defini

tionsdateien, die man benötigt, um das

Theme zur Verfügung zu stellen. Dabei

handelt es sich um die registration.php

und die theme.xml.

Grundsätzlich haben sich bei der Ent-

wicklung des Themes in erster Linie die

Struktur und der Aufbau geändert. Man

hat die Möglichkeit, wesentlich modula-

rer zu arbeiten, die Struktur wurde dahin-

gehend optimiert, dass das /skin-Ver-

zeichnis nicht mehr notwendig ist, und

insgesamt ist der neu entwickelte Aufbau

definitiv sinnvoller. Die Art und Weise,

ein Design aufzubauen, ist im direkten Vergleich zur Vorgän-

gerversion im Prinzip identisch. So gibt es Layout-XML-Files,

die definieren, an welcher Stelle welches Element geladen

wird. Weiterhin gibt es klassische Template-Files mit einer

Mischung aus HTML- und PHP-Code sowie CSS- und Java

Script-Dateien. Frontend-Entwickler müssen sich daher auf

Änderungen gefasst machen, aber nicht komplett von null an

beginnen.

Für Backend-Entwickler, die Module entwickeln und somit

die Funktionalität von Magento erweitern oder ergänzen, hat

sich eine ganze Menge geändert. Letztendlich bringt Magen-

to 2 speziell für die Entwickler viele neue Änderungen und

Möglichkeiten, und damit sind Entwickler auch diejenigen,

für die Magento 2 die größte Umstellung bedeutet.

Zwar wird weiterhin auf das Zend Framework in der Ver-

sion 1 gesetzt, dennoch hat sich der Unterbau von Magento

2 im Vergleich zu seinem Vorgänger komplett verändert. Die

erste auffällige Neuerung ist die geänderte Struktur im Be-

reich app/code. Während in Magento 1 eine Untergliederung

nach core, community und local existiert, wurde diese in Ver-

sion 2 entfernt.

Der Aufbau eines Moduls unterscheidet sich ebenfalls stark

von der vorherigen Version. So gibt es in Magento 2 inner-

halb eines Moduls Controller, Blöcke, XML-Definitionsdatei-

en sowie Template-Files und auch Übersetzung-Files. Hier

entsteht tatsächlich eine komplett neue Struktur bei der Mo-

dulentwicklung.

Die hier resultierenden komplexen Änderungen können

Sie sich idealerweise durch einen Blick in die Dokumentation

von Magento 2 unter http://devdocs.magento.com/guides/

v2.0/extension-dev-guide/build.html im Detail ansehen.

Auch wenn sich durch die neue Struktur und Methodiken bei

der Modulentwicklung die Komplexität erhöht, bietet Ma-

gento 2 auf der anderen Seite eine verbesserte Möglichkeit,

Code automatisiert zu testen und grundsätzlich robustere Er-

weiterungen zu entwickeln.

Tabelle 1: Struktur des Design-Verzeichnisses

<Vendor>_<Module>/ Hierin befinden sich modulspezifische Inhalte wie Template- und Layout-Dateien. Auch werden CSS-Dateien im
.css- beziehungsweise .less-Format innerhalb dieses Verzeichnisses abgelegt. Der Sinn und Zweck besteht darin,
für jedes Modul gekapselte Dateien in einem eigenen Modulordner zu verwalten.

etc/ In diesem Verzeichnis kann eine XML-Datei hinterlegt werden, die unter anderem Konfigurationseinstellungen
beinhaltet.

I18n/ Übersetzungen werden wie gewohnt im .csv-Format hinterlegt. Neu ist hingegen der Speicherort. Denn
Übersetzungen, die Sie für Ihr Design nutzen möchten, werden nun im Ordner i18n abgelegt.

/media Hierin kann eine Preview des Designs abgelegt werden

/web Das /web-Verzeichnis ist das große Sammelbecken für CSS- und JavaScript-Dateien sowie Grafiken. Alle
statischen Bestandteile Ihres Designs können im /web-Verzeichnis abgelegt werden. Dieses Verzeichnis spiegelt
daher den aus Magento 1 bekannten Skin-Ordner zum Teil wider.

Revolution im Checkout: Der neu gestaltete Checkout sorgt sicherlich für Steigerungen

der Conversion-Rate (Bild 4)

117www.webundmobile.de  1.2016

E-Commerce Backend

Alexander Steireif
ist Gründer und Mitinhaber der Magento Agen-

tur ITABS. Er ist auf das Thema E-Commerce

spezialisiert und setzt dabei primär auf die

E-Commerce-Plattform Magento.
www.alexander-steireif.com

�� �Magento-2-Dokumentation für Entwickler
http://devdocs.magento.com

�� �Magento 2 auf GitHub
https://github.com/magento/magento2

�� �Weiterführende Informationen und Links zu Magento 2
(inoffiziell)
https://firebearstudio.com/blog/magento-2-uberblick-
funktionen-reviews-tutorials-demo-marz-2015.htm

Links zum Thema

Dank der Veränderung der technologi-

schen Basis werden darüber hinaus be-

achtliche Performance-Steigerungen er-

zielt. Teilweise ist von Steigerungsraten

von bis zu 25 Prozent die Rede. Auch die

Skalierbarkeit wurde verbessert, was

Magento im Einsatz bei großen und kom-

plexen Projekten einen Vorteil verschafft.

Bezogen auf den technologischen Un-

terbau kann man bei Magento 2 tatsäch-

lich von einer kleinen Revolution spre-

chen. Denn unter der Haube hat sich tat-

sächlich viel geändert. Sind die neuen

Möglichkeiten im Bereich der Frontend-

Entwicklung noch halbwegs überschau-

bar, so bietet Magento bei der Modulent-

wicklung komplett neue Möglichkeiten.

Die neuen Möglichkeiten sorgen jedoch

auch für eine größere Komplexität und

erfordern im ersten Schritt viel Einarbei-

tungszeit. Die Modulentwicklung nimmt definitiv an Komple-

xität zu, und speziell in diesem Bereich bewegt sich Magen-

to 2 stark in Richtung Enterprise-System.

Was passiert eigentlich in Magento 1?
Neben den Diskussionen über die neuen Möglichkeiten und

Funktionen von Magento 2 muss man definitiv auch über die

Zukunft von Magento 1 nachdenken. Denn eines ist auch

klar: Sobald Magento 2 veröffentlicht wird, wird es noch Mo-

nate dauern, bis populäre Extensions für Magento 2 verfüg-

bar sein werden.

Hierbei geht es um für Shop-Betreiber definitiv kritische

Funktionserweiterungen wie Payment-Extension, Erweite-

rungen für den Versand, Schnittstellen und Co. Auch wenn

aktuell im Hintergrund bei vielen Unternehmen schon inten-

siv an Magento-2-Erweiterungen gearbeitet wird, so muss

man realistischerweise auch sagen, dass zum Launch gar

nicht alles bereitgestellt werden kann. Auch werden Online-

Shops, die über die letzten Jahre hinweg modifiziert und er-

weitert wurden, nicht von heute auf morgen auf Magento 2

umsteigen können.

Die Migration von Magento 1 auf Magento 2 wird, so ist zu-

mindest der aktuelle Stand, definitiv nicht per Knopfdruck

möglich. Daten müssen migriert und Ex-

tensions angepasst werden – kurz gesagt

wird eine Migration mit viel Aufwand

verbunden sein. Magento ist sich dieser

Problematik bewusst, weswegen die

Version 1.x noch drei Jahre nach dem

Launch von Magento 2 unterstützt wird.

Shop-Betreiber können aus diesem

Grund auf der einen Seite aufatmen,

denn eine Migration muss nicht von heu-

te auf morgen durchgeführt werden.

Auch ist der Zeitraum von drei Jahren

ausreichend, speziell im Bezug auf einen

kompletten Relaunch.

Für Entwickler, Designer und Agentu-

ren wird es hingegen eine spannende

Zeit werden, wenn parallel Magento-1-

und Magento-2-Projekte realisiert und

unterstützt werden müssen. Denn hier

werden die Anforderungen an Entwick-

ler definitiv stark steigen.

Fazit
Revolution oder Evolution, das ist hier die Frage. Pauschal

lässt sich diese jedoch in Bezug auf Magento 2 nicht beant-

worten. Viel mehr wird man mit Magento 2 eine Mischung

aus beidem vorfinden. Faktisch wird es keine großartigen

neuen Funktionalitäten geben. Features werden identisch

zum Vorgänger vorhanden sein, das Backend macht einen

aufgeräumten und überarbeiteten Eindruck und das neue

Standard-Theme ist State of the Art. Hier kann man definitiv

von einer Evolution sprechen. Dafür hat sich im Hintergrund

im Großen und Ganzen alles geändert, was Anforderungen

an Frontend- und Backend-Entwickler stellen wird. Speziell

was die Modulentwicklung angeht, hat man wohl mit einer

kleinen Revolution zu kämpfen, doch sind die neuen gewon-

nenen Möglichkeiten sehr vielseitig.

Magento liefert mit der Version 2 ein gutes und solides Pro-

dukt, das über viele Verbesserungen und Optimierungen ver-

fügt. Die große Feature-Schlacht, wie sie etwa bei neuen Ver-

sionen von Shopware gefeiert wird, bleibt hingegen aus. Das

macht Magento 2 aber nicht per se schlechter, sondern ver-

stärkt eher den Enterprise-Aspekt, denn mit Magento 2 woll-

te man vor allem einen guten, stabilen und skalierbaren Un-

terbau erschaffen, dessen Funktionsumfang primär von

Agenturen und deren Entwicklern erweitert wird.� ◾

Theme-Struktur: Mit Version 2 ändert

sich unter anderem die Theme-Struktur

(Bild 5)

118 1.2016  www.webundmobile.de

CMSBackend

Abgesehen von einem überarbeiteten Back­

end und vielen Neuerungen unter der

Haube bietet die neue Version eine Vielzahl

von Verbesserungen für Systemintegratoren

und Entwickler, setzt aber auch eine moderne

Serverumgebung voraus.

Generell wurde der Kern in vielerlei Hinsicht

überarbeitet und auf einen fortschrittlichen

und stabilen Stand gebracht, der TYPO3 CMS

fit für die nächsten Jahre macht. Schließlich

handelt es sich um eine LTS-Version, die min­

destens drei Jahre lang Maintenance, Bugfixes

und Security-Updates erhalten wird.

Agile Release Cycle
Etwas gewöhnungsbedürftig ist die Versions­

nummer 7 LTS, wenn man bedenkt, dass im

Verlauf der letzten Monate bereits einige Ver­

sionen im 7.x-Zweig freigegeben wurden. TYPO3-CMS-Ver­

sionen, die den LTS-Status genießen, geben besonders Agen­

turen, aber auch Entwicklern die Sicherheit, auf eine stabile

Code-Basis zu setzen. Diese wird über einen besonders lan­

gen Zeitraum unterstützt. Die Resonanz auf das LTS-Konzept,

das bereits 2011 mit TYPO3 Version 4.5 eingeführt wurde, ist

erwartungsgemäß sehr positiv ausgefallen und auch in ande­

ren Projekten etabliert (zum Beispiel bei Ubuntu Linux, Dru­

pal, Node.js und anderen).

Neue Features und moderne Technologien erfordern aus­

giebige Tests und werden daher in LTS-Versionen nur zeit­

verzögert eingeführt. Unter anderem aus diesem Grund wur­

de im November 2014 ein neues Release-Konzept angekün­

digt. Bei TYPO3 CMS werden diese in Sprint-Releases – also

in Versionen zwischen LTS-Versionen – implementiert, die in

relativ kurzen Abständen veröffentlicht werden.

Somit können mögliche Probleme frühzeitig identifiziert

und korrigiert werden.

Sprint-Releases besitzen einen sehr schnellen Lebenszyk­

lus. Sobald eine neue Version veröffentlicht wird, ist die vor­

herige veraltet und wird nicht mehr weiter unterstützt. Ein

Update von einem Sprint-Release zum nächsten ist daher

empfehlenswert und funktioniert in den meisten Fällen rei­

bungslos.

Obwohl LTS-Versionen drei Jahre lang mit Updates ver­

sorgt werden, wird die nächste LTS Version von TYPO3 CMS

bereits in circa eineinhalb Jahren erscheinen. Durch diese

Versionspolitik (Agile Release Cycle genannt) ist es sogar

theoretisch möglich, eine Version zu überspringen, wenn

man Instanzen von LTS- zu LTS-Version aktualisiert.

Vom bekannten CMS TYPO3 wurde eine neue LTS-Version veröffentlicht.

Moderne Technologien
TYPO3 CMS 7 LTS

Angefangen von der Version 7.0, die im Dezember 2014

veröffentlicht wurde, bis einschließlich Version 7.5 (Oktober

2015) wurden insgesamt sechs Sprint Releases von TYPO3

CMS der Öffentlichkeit vorgestellt. Die neue Version stellt

nun den Abschluss der 7.x-Serie dar und trägt den Namen

TYPO3 CMS 7 LTS.

Überarbeitetes Backend
Abgesehen von einem neuen Anmeldeformular, das sich in

einigen Details individuell anpassen lässt (siehe Anleitung im

Kasten), fällt als Erstes ein überarbeitetes Backend auf. Die

neue Version von TYPO3 CMS basiert auf dem Twitter-Boot­

strap-Framework und ist somit in vielen Aspekten auch auf

mobilen Endgeräten gut bedienbar.

Generell setzt das Backend auf ein Flat-Design mit farbi­

gen und aussagekräftigen Icons. Wie bei bisherigen TYPO3-

Versionen üblich, findet man diese überwiegend in der lin­

ken Funktionsleiste. Diese Leiste kann so weit minimiert wer­

den, dass nur noch die Icons ohne beschreibenden Text sicht­

bar sind (Bild 1). Redakteure werden diese Funktion bald

schätzen lernen, da man die Bedeutung der Icons sehr schnell

auswendig kennt und die Minimierung den Arbeitsbereich

auf der rechten Seite deutlich vergrößert.

Die Icons nutzen das Schrift- und CSS-Toolkit Font Awe­

some, das bekannt für seine skalierbaren Vektor-Icons ist und

auch auf hochauflösenden Retina-Displays für eine perfekte

Darstellung sorgt. Das einheitliche Design der Icons erstreckt

sich über das gesamte Backend: angefangen von der bereits

erwähnten Funktionsleiste über sämtlichen Listen bis hin zu

internen Modulen.

Das Backend von TYPO3 CMS 7 LTS (Bild 1)

119www.webundmobile.de  1.2016

CMS Backend

Einige Module wurden aus der Funktions­

leiste entfernt. Wer auf den ersten Blick die Be­

nutzereinstellungen oder die Hilfefunktionen

vermisst, findet diese nun in der oberen Leiste

wieder. Für Administratoren bietet ein neuer

Menüpunkt einen schnellen Überblick über

das aktuelle System (unter anderem Webser­

ver, Datenbankserver und PHP-Version) und

weist auf mögliche System- und Konfigura­

tionsprobleme hin (Bild 2). Systemintegratoren

und Entwickler können dieser Systemüber­

sicht eigene Informationen hinzufügen.

An mehreren Stellen im Backend können

Benutzer Datums- beziehungsweise Zeitanga­

ben machen. Das betrifft beispielsweise die

Konfiguration, zu welchem Zeitpunkt eine Sei­

te, ein Inhaltselement oder ein News-Artikel

automatisch veröffentlicht oder wann ein Task

im Planer (Scheduler) ausgeführt werden soll. Diese Auswahl

wird nun mit einem Bootstrap-kompatiblen Date-Picker rea­

lisiert, der sich ideal in das neue Backend-Design einfügt.

Zu den eher kleinen, aber dennoch nützlichen Verbesse­

rungen im Backend gehört unter anderem eine neue Funk­

tion, bestimmte Datensätze mit Beschreibungen auszustat­

ten. Diese beinhaltet derzeit zum Beispiel Dateispeicher

(Filemounts), Inhaltselemente (Content Elements) und sogar

Backend-Benutzer.

Zusätzlich wird während der Eingabe von Daten in ver­

schiedenen Textfeldern die Anzahl der verbleibenden Zei­

chen angezeigt. Diese und andere Funktionen sind einer voll­

ständigen Runderneuerung der sogenannten Form-Engine

von TYPO3 CMS zu verdanken. Auch wenn diese Arbeit für

Redakteure nicht sofort sichtbar ist, ist die Form-Engine eine

zentrale und wichtige Komponente, da sie für das Rendern

sämtlicher Formulare im Backend verantwortlich ist. Die

überarbeitete Version ist nicht nur robuster und auf dem ak­

tuellen Stand der TYPO3-Technik, sondern erlaubt es Exten­

sion-Entwicklern auch, eigene Felder zu implementieren und

deren Aussehen zu beeinflussen.

Auf eine kleine Umgewöhnung müssen sich Redakteure

bei der Auswahl von Inhaltselementen einstellen. Als typi­

schen Seiteninhalt gab es bisher unter anderem die Elemen­

te Text, Text und Bilder und Nur Bilder. Ein neues Inhaltsele­

ment ersetzt seit TYPO3 Version 7.5 die beiden erstgenann­

ten. Hierbei handelt es sich um Text & Media.

Inhaltselemente und Bildbearbeitung
Wie der Name bereits vermuten lässt, unterstützt dieses neue

Inhaltselement nicht nur normale Bilder als Medien, sondern

zum Beispiel auch Videos. YouTube- und Vimeo-Videos kön­

nen ganz einfach durch die Eingabe ihres URL mit Standard­

bordmitteln von TYPO3 CMS in die Website eingebunden

werden.

Bereits seit Version 7.2 haben Redakteure außerdem die

Möglichkeit, bestimmte Ausschnitte von Bildern sehr komfor­

tabel im Backend zu bearbeiten (Image Cropping). Diese

Funktion erlaubt es, Bilder auf bestimmte Größen zuzu­

schneiden, ohne dabei das Originalbild zu verändern (Bild 3).

Diese Image Cropping-Funktionalität steht außerdem Sys­

temintegratoren in TypoScript, Fluid und im TCA (Table Con­

figuration Array) zur Verfügung.

Primär für Systemintegratoren und Adminis­

tratoren interessant ist die neue System-Exten­

sion Fluidbased Content Elements, die erst in

den jüngsten Sprint-Releases eingeführt wur­

de. Diese erlaubt es, Fluid Templates anstelle

des bisher gewohnten TypoScript zum Rendern

von Inhaltselementen zu verwenden. Zwar ist

diese Lösung noch ziemlich neu, sie könnte

aber über kurz oder lang eine leistungsstarke

Alternative zu CSS Styled Content darstellen.

Backend-Benutzer
Um den sozialen Aspekt der Zusammenarbeit

von Redakteuren zu stärken, haben Backend-

Benutzer nun die Möglichkeit, in ihrem Konto

ein Profilbild hochzuladen. Dieses kleine Bild,

auch als Avatar bekannt, wird an verschie­ ▶Die minimierte Funktionsleiste zeigt lediglich Icons und bietet viel Platz (Bild 2)

Kurzer Systemüberblick für Administratoren (Bild 3)

120 1.2016  www.webundmobile.de

CMSBackend

denen Stellen im Backend dargestellt.

Auch bei der Sicherheit hat sich bei den

Backend-Benutzerkonten etwas verän­

dert: Möchte ein Benutzer sein Passwort

ändern, ist die vorherige Eingabe des al­

ten Passworts zwingend notwendig.

Dateiliste
Drei neue Funktionen erweitern den

Funktionsumfang der Dateiliste. Beson­

ders bei großen Websites mit vielen Da­

teien und einer umfangreichen Verzeich­

nishierarchie war es bisher unter Umstän­

den schwierig, Dateien im Filesystem zu

finden. Durch die Eingabe eines beliebi­

gen Suchbegriffs in einem Textfeld wer­

den die Verzeichnisse rekursiv durch­

sucht und entsprechende Suchergebnisse

aufgelistet.

Die zweite interessante Neuerung betrifft das Hochladen

von Dateien, sofern bereits eine Datei mit demselben Namen

vorliegt. Hier wird nun ein Dialogfenster eingeblendet, in

dem der Benutzer aufgefordert wird, zu wählen, welche der

folgenden drei Aktionen ausgeführt werden soll: ersetzen,

umbenennen oder überspringen. Dies kann für jede Datei

einzeln sowie auch als Massen-Update angewendet werden

(Bild 4). Um eine einzelne Datei ganz gezielt zu ersetzen, bie­

tet die Dateiliste unter TYPO3 CMS jetzt einen extra Button

in der Listenansicht. Eventuell existierende Metadaten gehen

hierbei nicht verloren, sondern werden für die neue Datei au­

tomatisch übernommen.

Erweiterungs-Manager
Die neue TYPO3-CMS-Version bietet aber nicht nur Redak­

teuren viele Verbesserungen. Systemintegratoren können

nun bei der Aktualisierung von Extensions die gewünschte

Zielversion auswählen. Das ist besonders dann nützlich,

wenn man nicht auf die neueste Version einer Extension ak­

tualisieren möchte (dies konnte bisher nur über Umwege er­

reicht werden).

Der Erweiterungs-Manager kann jetzt außerdem so ein­

gestellt werden, dass Extensions nach dem Download nicht

automatisch installiert werden.

TypoScript
Zu den wichtigsten Änderungen im Bereich TSconfig und

TypoScript gehört unter anderem die Tatsache, dass Back­

end-Layouts sich nun per PageTSconfig definieren lassen

und somit die Konfiguration in Dateien ausgelagert werden

kann. Web-Developer, die für die Entwicklung von TYPO3-

Websites eine Versionsverwaltung wie zum Beispiel Git ver­

wenden, werden diesen Schritt zweifelsfrei begrüßen.

Der TYPO3-interne Rich Text Editor (RTE) wurde an meh­

reren Stellen aktualisiert. Dazu gehört die Möglichkeit, nun

auch mehrere CSS-Dateien einbinden zu können, um zum

Beispiel eigene Styles zu definieren:

RTE.default.contentCSS {

 file1 = fileadmin/rte_stylesheet1.css

 file2 = fileadmin/rte_stylesheet2.css

}

Mit sogenannten Conditions kann man in TypoScript Konfi­

gurationen vornehmen, die nur unter bestimmten Umständen

gültig sein sollen. Die von TYPO3 bereitgestellten Conditions

reichen hierbei von der Abfrage der aktuellen IP-Adresse des

Besuchers über den Anmeldestatus bis hin zu Parametern im

GET/POST-Request.

Neu eingeführt wurde in TYPO3 CMS 7 LTS ein API, das

Custom Conditions zulässt und es somit Entwicklern erlaubt,

ihre eigenen Conditions für TypoScript zu implementieren,

ohne eine userFunc verwenden zu müssen. Ein Code-Bei­

spiel findet sich in der offiziellen TypoScript-Referenz auf

https://docs.typo3.org.

Zwei Erweiterungen betreffen das Einbinden von Java­

Script-Dateien. Zum einen kann mit der neue Eigenschaft in-

tegrity ein SRI Hash (SubResource Integrity) spezifiziert wer­

den. Bei SRI handelt es sich um eine W3C-Spezifikation, mit

Im Backend integrierte Bildbearbeitungsfunktion (Bild 4)

So verleiht man dem Backend ein individuelles Outfit.

Ist man mit einem Administrator-Benutzer angemeldet, kön-

nen im Erweiterungs-Manager die Einstellungen der Sys-

temextension TYPO3 Backend aufgerufen werden. Hier kann

nicht nur das TYPO3-Logo gegen ein beliebiges Bild ausge-

tauscht und eine individuelle Hervorhebungsfarbe ausgewählt,

sondern auch ein eigenes Hintergrundbild hochgeladen wer-

den. Letzteres wird dann bei Bildschirmgrößen von mindestens

767 Bildpunkten dargestellt – ideal ist dies für Agenturen, um

der TYPO3-Instanz schon bei der Backend-Anmeldung ein

Branding zu verleihen.

Branding bei der Anmeldung am Backend

121www.webundmobile.de  1.2016

CMS Backend

der sichergestellt werden kann, dass Dateien, die sich auf

Servern von Drittanbietern befinden (zum Beispiel jQuery

von einem CDN), nicht manipuliert wurden.

Zum anderen wurde die Eigenschaft async eingeführt, mit

der man das asynchrone Laden von JavaScript-Dateien kon­

figuriert. Ein Update auf jQuery UI Version 1.11 verspricht be­

schleunigte Ladezeiten im Backend, da ab dieser Version

AMD (Asynchronous Module Definition) unterstützt wird.

Dadurch werden JavaScript-Dateien erst geladen, wenn sie

benötigt werden.

Neues für Entwickler
Es ist bekannt, dass bei dem TYPO3-CMS-Projekt großer

Wert auf hohe Code-Qualität, einen guten Programmierstil

und professionelle Programmierkonzepte gelegt wird. Daher

wurden in den vergangenen Monaten auch die Unit- und

Functional-Tests erweitert und alte Teile der PHP-Codebasis

überarbeitet. Die Entwickler stellten somit sicher, dass TYPO3

CMS 7 LTS weitgehend den offiziellen Coding-Guidelines

entspricht und der Kern einheitliche Standards einhält.

TYPO3 CMS Version 7.4 war übrigens das erste Open-

Source-CMS, das den neuen PSR7-Standard implementiert

hat. PSR (PHP Specification Request) ist eine Spezifikation,

die der Standardisierung von Programmierkonzepten dient.

Eine detaillierte Beschreibung der Spezifikation findet sich

auf der Internetseite der PHP Framework Interop Group

(www.phpfig.org).

Composer
Eine weitere wichtige Neuerung ist der Einsatz von Compo­

ser. Dieses mächtige Werkzeug ist aus der PHP-Welt nicht

mehr wegzudenken, und auch das TYPO3-Projekt hat sich in

den vergangenen Monaten verstärkt um dessen Unterstüt­

zung gekümmert. TYPO3 CMS kann nicht nur mit allen ab­

hängigen Packages mittels Composer von Grund auf instal­

liert werden, sondern unter http://composer.typo3.org steht

ein zentrales Package Repository (Packagist) bereit, das sämt­

liche TYPO3-Extensions beinhaltet (Bild 5).

Extension-Entwickler können Package-Metadata und In­

stallationsanweisungen in einer composer.

json-Datei definieren. Der ComposerClassLoa­

der in TYPO3 CMS berücksichtigt dies und un­

terstützt den PSR4 Class Standard (Improved

Autoloading).

Form-Extension
Nicht zu verwechseln mit der zuvor erwähnten

Form-Engine ist die sogenannte Form-Exten­

sion. Mit ihr können jegliche Arten von Formu­

laren im Frontend entwickelt werden, ohne

eine einzige Zeile PHP-Code schreiben zu

müssen. Das können beispielsweise Kontakt­

formulare sein, die beim Absenden E-Mails an

bestimmte Adressen senden, Benutzerregist­

rierungen und so fort. Die Form-Extension

wurde von Grund auf überarbeitet und nutzt

jetzt das Extbase-Framework und Fluid zum

Rendern von Templates. Letzteres macht es Systemintegrato­

ren besonders einfach, eigene Templates zu verwenden und

somit Formulare individuell zu gestalten.

Funktionen in der Kommandozeile
Wenn man die zuvor beschriebene ComposerFunktionalitä­

ten außer Acht lässt, hat sich für Systemadministratoren nicht

sehr viel geändert. Erwähnenswert ist allerdings die Tatsa­

che, dass die Console-Komponente aus dem Symfony-Projekt

in den CommandController von TYPO3 integriert wurde.

Diese bietet einige interessante Features, und Systemadmi­

nistratoren werden mit hoher Wahrscheinlichkeit zukünftig

mehr TYPO3 Funktionen über die Kommandozeile steuern

können.

Eine weitere Neuerung ist der Parameters s, mit dem ein

laufender Task im Scheduler über die Kommandozeile been­

den werden kann.

Entfernte Funktionen und Kompatibilität
Die Veröffentlichung von sogenannten Major Releases ist im­

mer ein guter Zeitpunkt, sich von Altlasten zu trennen. Die

TYPO3-Entwickler halten sich hierbei strikt an die offizielle

Deprecation Strategy, die regelt, dass eine Funktion zuerst als

veraltet markiert werden muss und erst zwei TYPO3-Versio­

nen später entfernt werden darf. Somit haben Systeminteg­

ratoren und Entwickler ausreichend Zeit, entsprechende

Maßnahmen zu ergreifen.

Mit der Veröffentlichung von TYPO3 CMS 7 LTS ist wie er­

wartet eine große Anzahl veralteter Funktionen und Optio­

nen entfernt worden. Dazu zählen zum Beispiel die Typo­

Script-Templates der Extension CSS Styled Content der

TYPO3-CMS-Versionen 4.5 bis 6.1. Diese wurden lange Zeit

aus Kompatibilitätsgründen in jeder neuen Version übernom­

men, nun aber entfernt.

TypoScript Conditions wurden bereits zuvor erwähnt. Die

TYPO3-eigenen Conditions browser, version, system und

useragent sind bereits seit TYPO3 CMS 7.0 nicht mehr vor­

handen. Zudem wurde in derselben Version der Kompatibili­

täts-Layer entfernt. Dieser hat in TYPO3 Version 6.2 noch ▶

TER Composer Repository für Extensions (Bild 5)

122 1.2016  www.webundmobile.de

CMSBackend

dafür gesorgt, dass Extensions, die keine PHP-Namespaces

verwenden, lauffähig bleiben. Diese Rückwärtskompatibili­

tät hat allerdings ihren Preis in Form von nicht unerheblichen

Performance-Einbußen.

Wer in TYPO3 CMS 7 LTS nicht auf den besagten Kompa­

tibilitäts-Layer verzichten kann, findet ihn in der System­

extension compatibility6 wieder, die mitgeliefert wird und bei

Bedarf einfach aktiviert werden kann. In diese Extension

wurden übrigens noch weitere veraltete Features verscho­

ben, die zuvor im TYPO3-Kern vorhanden waren. Dazu ge­

hören etwa die TypoScript-cObjects SEARCHRESULTS, CO-

LUMNS, OTABLE, CLEARGIF, IMGTEXT, CTABLE, HRULER

sowie die Inhaltselemente mailform und search.

Durch den Fokus auf Twitter Bootstrap, jQuery und Requi­

reJS konnten die JavaScript-Bibliotheken prototype, script.

aculo.us und ExtCore entfernt werden. Dasselbe gilt für Tei­

le von ExtJS, zum Beispiel die Flash- und Chart-Komponen­

ten. Somit verlieren die TypoScript-Eigenschaften page.java

scriptLibs.Prototype, *.Scriptaculous, *.ExtCore und *.ExtJs

ebenfalls ihre Gültigkeit.

Installation und Update
Abgesehen von der zuvor erwähnten Möglichkeit, TYPO3

CMS nun auch über Composer installieren zu können, funk­

tioniert das bisher bekannte Vorgehen für eine Neuinstalla­

tion natürlich auch weiterhin: Nach dem Entpacken des

Quellpakets werden die symbolischen Links zu den entspre­

chenden Verzeichnissen und Dateien angelegt, die Datei

FIRST_INSTALL erstellt, und schon steht der webbasierten

Installation von TYPO3 CMS 7 LTS nichts mehr im Weg.

Um eine vorhandene TYPO3-Installation auf die neue Ver­

sion zu aktualisieren, muss diese in der Version 6.2 LTS vor­

liegen. Ältere Versionen sollten zuerst auf Version 6.2 ge­

bracht werden. Abhängig von den verwendeten Extensions

verläuft das Update problemlos, und der im Install-Tool inte­

grierte Upgrade-Wizard unterstützt Administratoren bei die­

sem Prozess.

Mindestvoraussetzungen
Vor einer Neuinstallation und natürlich vor einem Update

sollte auf jeden Fall sichergestellt werden, dass der Server die

Mindestvoraussetzungen für die neue Version von TYPO3

CMS erfüllt. Als Middleware wird mindestens PHP Version

5.5 (besser 5.6) benötigt, und als Datenbankserver wird My­

SQL 5.5 oder 5.6 empfohlen. MySQL darf nicht im strict mode

betrieben werden, was bei Version 5.6 allerdings häufig die

Standardeinstellung ist.

Abgesehen davon empfehlen die TYPO3-Entwickler min­

destens folgende serverseitigen Einstellungen: 128 MByte

Speicher für PHP, die Einstellung von 240 Sekunden als ma­

ximale Ausführungszeit für PHP-Skripts (max_execution_

time) und 8 MByte für Datei-Uploads.

Da das Backend von TYPO3 CMS unter Umständen einige

sehr umfangreiche Formulare enthalten kann, ist es außer­

dem empfehlenswert, die PHP-Einstellung max_input_vars

auf den Wert 1500 zu setzen (üblicherweise steht dieser Wert

auf 1000).

Fazit
Die vorherige TYPO3 CMS Version 6.2 LTS hatte ihren

Schwerpunkt auf der Architektur des Systems (zum Beispiel

die Einführung von Namespaces et cetera). Der TYPO3-

CMS-Version 7 LTS ist deutlich anzumerken, dass nun wie­

der Endbenutzer – also zum Beispiel Redakteure – im Fokus

stehen. Zusätzlich haben die Entwickler es geschafft, eine

LTS-Version auf den Markt zu bringen, deren Kern technolo­

gisch zukunftsweisend ausgerichtet ist.

Die Ereignisse der vergangenen Monate haben bei vielen

TYPO3-Anhängern für etwas Unsicherheit gesorgt: Die Ver­

öffentlichung von Neos CMS Version 2.0 und die Abspaltung

von der TYPO3 Association warfen erneut Fragen über die

Zukunft von TYPO3 auf – einem CMS, das bereits seit über

14 Jahren auf dem Markt ist.

Die neue LTS Version zeigt allerdings ganz klar, dass

TYPO3 CMS auch weiterhin eine der mächtigsten PHP-

Applikationen ist, um Websites aller Art, Größe und Komple­

xität zu entwickeln. Das visuell und technisch überarbeitete

Backend, die kinderleichte Integration von Videos, die neue

Bildbearbeitungsfunktion sowie die neuen Features in der

Dateiliste sprechen besonders Redakteure an.

Systemintegratoren werden von den Verbesserungen in

den Bereichen TypoScript, Extension Manager und User In­

terface profitieren. Die modernen Technologien, um die die

Codebasis erweitert wurde, und die gleichzeitige Entfernung

von Altlasten haben den Kern wieder auf ein stabiles Funda­

ment gehoben. Letzteres wird sich auch in der Performance

positiv auswirken, vorausgesetzt, man kann auf alte Exten­

sions verzichten. Es wird garantiert nicht viel Überzeugungs­

arbeit notwendig sein, wenn Agenturen ihren Kunden die

neue Version von TYPO3 CMS als Lösung vorschlagen.� ◾

Michael Schams
lebt seit 2008 in Melbourne/Australien und

arbeitet als Projekt Manager und Consultant.

Er ist zertifizierter TYPO3 Integrator und Project

Leader des offiziellen TYPO3 Security Guides.
@MichaelSchams

�� �Projektseite
http://typo3.org

�� �Dokumentation
https://docs.typo3.org

�� �PHP Framework Interop Group
www.phpfig.org

�� �Composer
http://getcomposer.com

Links zum Thema

Die Zukunft des E-Commerce

01.-02. März 2016, München

internetworld-messe.de InternetWorldMesse
#iwm

Mit Code IW16wmd 240,– € sparen!

Julia Bösch
Outfittery GmbH

Dominik Hensel
Deutsche See GmbH

Jens Diekmann
Douglas AG

Moritz Hau
Zalando SE

Prof. Dr. Gerrit
Heinemann
HS Niederrhein

Moritz Keller
Keller Sports GmbH

Franziska Majer
Videdressing SAS

Nils Müller
TRENDONE GmbH

Dr. Marcus Schöberl
Amazon.de GmbH

Dr. Stephan Zoll
Ebay International
AG

Kongress-Programm online!

124 1.2016  www.webundmobile.de

Flow-FrameworkBackend

Seit einiger Zeit steht für das PHP-Framework

Flow ein leistungsfähiges E-Commerce-Packa-

ge zur Verfügung, mit dem sich auch anspruchsvol-

le Wünsche realisieren lassen. In diesem Workshop

werden wir die Einbindung in eine Flow-Applika

tion beleuchten und uns einen Überblick über die

mitgelieferte Funktionalität verschaffen.

Hintergründe
Das Flow-Package ist Teil des Open-Source-Pro-

jekts Aimeos, das auf Basis einer gemeinsamen

E-Commerce-Bibliothek Webshop-Kompontenten

für verschiedene PHP-Frameworks und Applikatio-

nen anbietet. Bis jetzt werden Laravel, Flow, Sym

fony2, Zend und das TYPO3-CMS unterstützt.

Auf der Webseite http://aimeos.org findet man

weitere Informationen zum Projekt, zur Community

und den anderen Teilprojekten.

Die Grundlage dafür ist die gemeinsame PHP-

E-Commerce-Bibliothek (http://github.com/aimeos/aimeos-

core), die alle notwendigen Funktionalitäten eines Webshops

als anpassbare Komponenten kapselt. Sie ist plattformunab-

hängig und benötigt nur PHP 5.3 sowie einige Module, die in

der Regel in jeder PHP-Standardinstallation enthalten sind.

Die Integration in das jeweilige Framework oder die Appli-

kation erfolgt durch Adapter, die eine einheitliche Schnitt-

stelle zu den Objekten des Wirtssystems bereitstellen. So

wird zum Beispiel die native Cache-, Logger- und Session-

Implementierung von Flow genutzt, und URLs werden durch

den Flow-UriBuilder erzeugt. Natürlich können auch alle

Konfigurationsoptionen, mit denen sich die Bibliothek an ei-

gene Bedürfnisse anpassen lässt, durch die Flow-YAML-Da-

teien geändert werden.

Mit dem Aimeos-Package lassen sich maß-

geschneiderte Webshop-Lösungen bauen.

Webshop-Lösungen mit Flow

Die E-Commerce-Bibliothek ist auf den Umgang mit gro-

ßen Produktmengen bei gleichzeitig geringen Responsezei-

ten optimiert. Bis zu 100.000 Produkte sind ohne zusätzliche

Dienste wie Redis oder ElasticSearch mit einer MySQL-Da-

tenbank problemlos möglich. Im lokalen Setup einer Laravel-

Applikation wurden Response-Zeiten bis zu 40 Millisekun-

den gemessen, mit Flow liegen diese aber etwas höher.

Installation
Eine neue Flow-Applikation lässt sich am einfachsten mit

Composer und der Flow-Distribution erstellen. Aktuell ist die

Version 3.0, und Voraussetzung dafür ist die Installation von

TYPO3:

 Flow:

 persistence:

 backendOptions:

 host: 'Hostname oder IP-Adresse'

 dbname: 'Datenbankname'

 user: 'Datenbanknutzer'

 password: 'geheimes Passwort'

Listing 1: Configuration/Settings.yaml "require": {

 "aimeos/aimeos-flow": "~1.0",

 ...

},

"extra": {

 "installer-paths": {

 "Packages/Extensions/{$name}/":

 ["type:aimeos-extension"]

 }

},

Listing 2: composer.json

Flow-Commerce

125www.webundmobile.de  1.2016

Flow-Framework Backend

Composer. Nähere Information dazu findet man

auf http://getcomposer.org. Für eine neue Basis

applikation muss folgender Befehl auf der Kom-

mandozeile ausgeführt werden:

composer create-project

typo3/flow-base-distribution tutorial

Danach steht eine Flow-Applikation zur Verfü-

gung, die noch konfiguriert werden muss. Für Ai-

meos ist zumindest die Einrichtung einer Daten-

bank und das Hinterlegen der Zugangsdaten in

der Flow-Datei Configuration/Settings.yaml erfor-

derlich (Listing 1).

Bei den YAML-Dateien ist wichtig zu wissen,

dass jede Einrückung eine Ebene in der Konfigu-

ration darstellt und Einrückungen immer aus Viel-

fachen von zwei Leerzeichen bestehen. Andern-

falls wird Flow eine Fehlermeldung wegen eines

ungültigen Konfigurationsformats ausgeben.

Danach kann das Aimeos-Package installiert werden. Da

Aimeos ebenfalls Composer benutzt, reicht es, die Zeilen wie

in Listing 2 in die bereits vorhandene composer.json-Datei ein-

zupflegen. Im Abschnitt require sind bereits einige Abhän-

gigkeiten aufgelistet. Hier muss nur diejenige für das Ai-

meos-Package hinzugefügt werden. Der extra-Abschnitt

wird für die Aimeos-Erweiterungen benötigt, zu denen auch

die Adapter für die Integration in das Flow-Framework gehö-

ren. Anschließend reicht ein

composer update

im Hauptverzeichnis der Flow-Applikation aus, um alle not-

wendigen Abhängigkeiten zu installieren.

Setup
Noch sind die Aimeos-Komponenten nicht lauffähig, denn

dazu fehlen noch die notwendigen Tabellen in der Daten-

bank. Derzeit unterstützt Aimeos nur MySQL ab 5.1, für das

es auch optimiert ist. Die Datenbankstruktur lässt sich auto-

matisch mit folgendem Flow-Befehl auf der Kommandozeile

anlegen:

./flow aimeos:setup --option=setup/default/demo:1

Dadurch werden nicht nur die zu Aimeos gehörenden Tabel-

len und Indizes angelegt, sondern auch ein kompletter De-

mo-Datensatz eingespielt. Es entsteht damit ein vollständig

lauffähiger Webshop, mit dem Sie sofort loslegen können. In

Produktionsumgebungen würde man den Befehl ohne --opti-

on=... ausführen, das auch vorhandene Demodaten wieder

entfernt, ohne selbst angelegte Datensätze zu löschen. Brin-

gen neue Versionen Änderungen an der Datenbankstruktur

mit sich, wird ebenfalls das Schema automatisch aktualisiert

und alle vorhandenen Daten migriert.

Als letzter Schritt sollten für SEO-freundliche URLs noch

die vom Aimeos-Package mitgelieferten Routen importiert

werden. Dazu müssen die Zeilen wie in Listing 3 gezeigt am

Anfang der Configuration/Routes.yaml eingefügt werden.

Auch hier ist wieder auf die korrekte Einrückung der Zei-

len zu achten. Wichtig ist außerdem, dass die Zeilen vor der

Definition der FlowSubRoutes eingefügt werden. Andernfalls

passen die Flow-Standardrouten zunächst und es erscheint

eine Fehlermeldung, dass die Route für das Aimeos-Package

nicht gefunden wurde. Zum schnellen Ausprobieren der

Frontend: Listenseite mit dem Aimeos-Standard-Theme (Bild 1)

Admin: Die auf ExtJS basierende Administrationsoberfläche (Bild 2)

▶

-

 name: 'Aimeos'

 uriPattern: 'shop/<AimeosShopRoutes>'

 subRoutes:

 AimeosShopRoutes:

 package: 'Aimeos.Shop'

Listing 3: Configuration/Routes.yaml

126 1.2016  www.webundmobile.de

Flow-FrameworkBackend

Norbert Sendetzky
ist Software-Architekt und Berater mit den

Schwerpunkten E-Commerce, Performance

und Sicherheit. Des Öfteren findet man ihn auf

Konferenzen und Barcamps, wo er auch gerne

in Sessions darüber erzählt.

Applikation in einer lokalen Installation eignet

sich der ab PHP 5.5 integrierte Webserver sehr

gut. Er wird auf der Kommandozeile mit dem

folgenden Befehl im Hauptverzeichnis der Ap-

plikation gestartet:

php -S 127.0.0.1:8000 -t Web

Anschließend stehen das Frontend (Bild 1) und

die Administrationsoberfläche (Bild 2) von Ai-

meos unter den URLs http://127.0.0.1:8000/

shop/list und http://127.0.0.1:8000/shop/admin

zur Verfügung.

Komponenten
In der Listenansicht sieht man bereits unter-

schiedliche Komponenten, die auf dieser Seite

plaziert wurden (Bild 3). Dazu gehört neben der

Produktliste an sich auch der Filter für die Ka-

tegorien und die facettierte Suche sowie der

kleine Warenkorb im oberen Bereich. Insge-

samt sind bereits folgende Seiten vorkonfiguriert:
�� Listenansicht,
�� Detailansicht,
�� Warenkorb,
�� Checkout-Prozess,
�� Bestätigungsseite,
�� MyAccount-Seite.

Darüber hinaus gibt es noch Hilfskomponenten für die facet-

tierte Suche, die Volltextsuche oder für die Aktualisierung

des Versand- und Zahlungsstatus. Diese sind unter eigenen

URLs ansprechbar und geben Daten im JSON-Format, als

JavaScript oder nach spezifischen Anforderungen zurück.

Insgesamt gibt es derzeit 19 verschiedene Komponenten

(inklusive diejenigen für den Versand der verschiedenen

E-Mails), die jeweils eine spezifische Aufgabe erfüllen. Die

meisten auf den genannten Seiten eingebundenen Kompo-

�� �Open-Source-Projekt Aimeos
http://aimeos.org

�� �Aimeos Flow Package
http://github.com/aimeos/aimeos-flow

�� �Aimeos E-Commerce Core Bibliothek
http://github.com/aimeos/aimeos-core

�� �Composer
http://getcomposer.org

�� �PHP-Framework Flow
http://flow.typo3.org

�� �Aimeos-Dokumentation
http://aimeos.org/docs/Flow

Links zum Thema

Komponenten, die auf der Demo-Seite plaziert sind (Bild 3)

nenten bestehen selbst aus zahlreichen Teilkomponenten,

die zusammen eine hierarchische Struktur bilden. Sowohl die

Kompontenen als auch deren Teilkomponenten lassen sich

durch Konfiguration beliebig auf den Seiten beziehungswei-

se innerhalb einer Komponente verschieben. Dadurch ist es

möglich, die resultierende HTML-Struktur alleine durch die

Anpassung der Konfiguration zu ändern.

Genauso können vorhandene Teilkomponenten entfernt,

neue hinzugefügt oder bestehende durch eigene ersetzt wer-

den. Falls das strukturelle HTML einmal nicht alleine durch

Konfiguration und CSS an die Bedürfnisse des Kunden ange-

passt werden kann, lässt sich natürlich jedes Template einer

Teilkomponente austauschen. Dadurch wird der Aufwand für

Anpassungen weitestgehend minimiert. Mehr dazu ist in der

Dokumentation auf http://aimeos.org/docs/Flow zu finden.

Fazit
Mit dem Aimeos Package kann innerhalb kurzer Zeit jede

Flow-Applikation um einen Webshop oder eine flexible

E-Commerce-Lösung ergänzt werden. Mit circa 170.000 Zei-

len Code, über 10.000 Tests, mehr als 100.000 Zeilen Doku-

mentation sowie circa 2500 Konfigurationsoptionen bietet

Aimeos ein leistungsfähiges und gut getestetes System, das

auch hohen Ansprüchen problemlos genügt. Die Einbindung

in Neos als CMS wäre der nächste logische Schritt.� ◾

Jetzt kostenlos testen!

Das Fachmagazin für IT-Entscheider
2 Ausgaben kostenlos testen. Mit exklusivem Zugang zu unseren
Digitalausgaben. Business-Newsletter inklusive.

www.com-magazin.de/gratis

128 1.2016  www.webundmobile.de

LandingpageBeyond Dev

Bei einer Landingpage handelt es sich um die Seite, die

sich nach einem Klick auf einen Link in einer Suchma-

schine oder auf ein Banner öffnet. Oft ist es die Startseite oder

eine spezielle Unterseite, die für den Besucher immer ein ein-

ziges bestimmtes Angebot oder Produkt in den Vordergrund

stellt und für bestimmte Keywords optimiert wurde.

Gibt der Suchende etwa „Skiurlaub Januar 2016“ bei

Google oder einer anderen Suchmaschine ein, bekommt er

eine Liste von Ergebnissen: Zuoberst stehen die Anzeigen,

die etwa über Google Adwords erstellt worden sind. Unter

diesen Anzeigen erscheinen die Links zu weiteren Seiten, die

die Suchmaschine anhand der Keywords findet. Im Beispiel

sind das fast 200.000 Ergebnisse (Bild 1).

In der Regel klickt der Besucher auf einen Link, der sich auf

der ersten Seite befindet – wenn die kurzen Beschreibungs-

texte zum Gesuchten passen. Im Beispiel bietet die Seite

www.weg.de/ski-urlaub eine Headline, die besonders viel-

versprechend klingt: »Skiurlaub 2016 inkl. Skipass: Ihre Win-

terreise günstig buchen«. Jetzt kommt es darauf an, dass ge-

Text- und Bildaufbau bestimmen die Qualität einer Landingpage.

Gut gelandet
Grafik für Entwickler

nau diese Seite, die damit zur Landingpage wird, die ge-

wünschten Informationen liefert (Bild 2).

Landet der Besucher auf einer Seite, wird er in nur weni-

gen Sekunden intuitiv entscheiden, ob die Seite das Verspro-

chene bietet, und vor allem, ob sie vertrauenswürdig ist oder

nicht. Etwa zwanzig bis dreißig Sekunden verweilen die

meisten Besucher auf einer gerade geöffneten Seite. Manche

unterschreiten diesen Wert sogar, geduldige User lassen sich

bis zu 40 Sekunden auf den gezeigten Webinhalt ein.

Wichtig ist also eine klar erkennbare Struktur. Die Seiten-

inhalte, ob Text, Grafik, Bilder oder Videos, müssen eindeu-

tige Informationen zum Produkt enthalten, schnell erfassbar

und auf die entsprechende Zielgruppe zugeschnitten sein.

Steht das Produkt direkt zum Verkauf, sollten zudem schlüs-

sige Zahlungsmethoden angeboten werden, um dem Interes-

senten die Entscheidung zum Kauf zu erleichtern (Bild 3).

Zudem muss die technische Seite stimmen: Zu lange Lade-

zeiten der Inhalte verschlingen einen Löwenanteil der Ver-

weildauer des Besuchers.

Weg.de zeigt übersichtlich alle Elemente, die auf eine Landingpage gehören

(Bild 2)

Die Suche bei Google nach »Skiurlaub Januar 2016«

liefert fast 200.000 Ergebnisse (Bild 1)

129www.webundmobile.de  1.2016

Landingpage Beyond Dev

Eine Landingpage kann die übergeordnete Seite einer

Werbekampagne sein und so dem Besucher einen ersten

Überblick über die Angebote und den Anbieter liefern. Doch

auch andere Einsatzmöglichkeiten sind denkbar: Geht es bei-

spielsweise darum, sich als Verlag auf dem Markt zu platzie-

ren, sollten auch hier gut funktionierende Einstiegsseiten den

Betrachter zum Landen einladen. Doch welche Elemente ma-

chen hier eine gute Landingpage aus? Hier reicht es nicht,

beispielsweise nur einzelne Bücher auf die Seite zu packen,

vielmehr gehört auf die Landingpage eigener Inhalt (Unique

Content). Schließlich will der Interessent zunächst einen gro-

ben Überblick bekommen, um danach gezielt auf Untersei-

ten weitere Inhalte zu betrachten. Zudem ist Unique Content

eine der wichtigen Voraussetzungen für eine gute Po-

sitionierung auf der Liste der Suchergebnisse: Suchma-

schinen durchpflügen lediglich den Text.

Beispiel Rowohlt: Jeder Ast der Verlagsgruppe hat

eine eigene Landingpage, auf der ein übergeordneter

Text den Verlag und seine Entstehung und Ausrichtung

beschreibt und die wichtigsten Autoren nennt (Bild 4).

Auf Zielgruppe orientiert
Doch nicht nur der Text zählt. Eine Landingpage kon-

zentriert sich auf ein bestimmtes Angebot und präsen-

tiert dabei dem Betrachter die Inhalte so, dass sie auf

seine Bedürfnisse angepasst sind. Gibt es viel Konkur-

renz, bestimmt der erste Eindruck des Betrachters, wel-

ches Angebot er sich näher ansieht – und ob er even-

tuell zum Kunden wird. Dieser erste Eindruck hängt

jedoch nicht nur von den Texten ab.

Ein wichtiger Beurteilungsfaktor des Users ist, ob er

die Seite sympathisch findet. Und Bilder sind Sympa-

thieträger. Zudem müssen die Bedürfnisse der ange-

peilten Zielgruppe berücksichtigt werden. Wird etwa

nach betreutem Wohnen für Senioren gesucht, darf die Seite

nicht überladen sein.

Ältere Menschen sind mit dem Internet noch nicht so ver-

traut und kommen mit einer Seite besser zurecht, die nur we-

nige Elemente zeigt. Neben einer größeren Schrift oder der

Möglichkeit, diese zu vergrößern, dürfen Links zu wichtigen

Informationen nicht fehlen (Bild 5).

Bei der Konzeption der Landingpage sollte immer das an-

gebotene Produkt der Seite im Zentrum liegen. Seitenverwei-

se, die mit dem eigentlichen Angebot nichts zu tun haben, ha-

ben hier also in der Regel nichts zu suchen. Links zu den ent-

sprechenden Unterseiten, etwa einzelnen Produkten oder Er-

gänzungen, dürfen mit auf die Seite.

Die Landingpage von Windows 10 ist dank der

klaren Struktur schnell zu erfassen (Bild 3)

Die einzelnen Verlage der Gruppe Rowohlt werden auf eigenen Landingpages in

einem eigenen Text vorgestellt (Bild 4)

Diese Seite spricht die Zielgruppe Senioren an: Wichtig sind stimmungs-

volle Bilder, wenige Elemente auf der Seite und gut lesbare Schrift (Bild 5)

▶

130 1.2016  www.webundmobile.de

LandingpageBeyond Dev

Ein Beispiel: Das Delikatessengeschäft Dallmayr bietet ne-

ben verschiedenen Produkten auch Serviceleistungen wie

Party und Catering. Die Seite für den hauseigenen Kaffee

entspricht dem Aufbau einer guten Landingpage: Links oben

liegt das Logo. Unter der nachfolgenden, dezent gestalteten

Hauptnavigationsleiste liegt ein Bild als Stimmungsträger.

Darunter ist die Headline zu sehen, der ein allgemeiner Text

über Kaffee folgt. Rechts daneben befindet sich als Produk-

tabbildung eine Kaffeebohne. Weitere, dazugehörige Links

finden sich links neben dem Text. Durch die farbliche Gestal-

tung, weißer Text auf schwarzem Grund, heben sich die Sei-

tenverweise gut von den restlichen Design-Elementen ab.

Da für den Verkauf ein Online-Shop über die obere Navi-

gationsleiste erreichbar ist, kommt diese Landingpage ohne

Call-to-Action oder Formular aus. Auch ohne den Text über

Kaffee zu lesen, ist der Inhalt der Seite durch den klaren Auf-

bau in Sekundenschnelle zu erfassen. Zwar greift die die

Headline nicht das Thema Kaffee auf, aber zusammen mit

dem Produktbild, der Bohne und dem bekannten Dallmayr-

Logo ist der Inhalt des Angebots dennoch auf den ersten Blick

zu erkennen (Bild 6).

Call-to-Action
Bei einem Call-to-Action handelt es sich um ein Marketing-

Element, das aus einer grafisch gestalteten Schaltfläche und

einem kurzen dazugehörigen Erklärungstext besteht. Er

dient dazu, den Besucher der Seite per Klick auf die Schalt-

fläche zu einer Handlung aufzufordern.

Bei der Gestaltung dieses Elements muss darauf geachtet

werden, dass es seriös erscheint: Viele Effekte und Bildele-

mente sind hier fehl am Platz. Zudem hilft die passende For-

mulierung des Begleittextes, den Besucher zur Handlung zu

animieren. Gibt es auf einer Landingpage einen Call-to-Ac-

tion, sollte dieser möglichst so platziert werden, dass er ohne

lästiges Scrollen erreicht werden kann (Bild 7).

Neben einem Call-to-Action kann eine Landingpage ein

Formular enthalten. Dabei gilt es zu beachten: Je kürzer ein

Formular ist, desto eher wird ein potenzieller Kunde es aus-

füllen. Zudem sollte das Formular möglichst benutzerfreund-

lich sein: Scheint die Eingabe zu kompliziert zu sein, brechen

viele Nutzer an dieser Stelle ab.

Die Benutzerfreundlichkeit eines Formulars wird auch

durch die entsprechende grafische Aufbereitung unterstützt.

So sollte auf Hintergrundmuster auf der Schaltfläche oder auf

aufdringliche Schlagschatten und 3D-Effekte verzichtet wer-

den. Die Bezeichnung der Eingabefelder sollte ebenfalls

wohlüberlegt sein: Am schlüssigsten sind die Einträge links-

bündig über dem entsprechenden Feld. Auch ein hellgrauer

Eintrag mitten im Feld ist benutzerfreundlich (Bild 8).

Zudem müssen die Größen und die Anordnung der Einga-

befelder stimmen. Zu vermeiden sind beispielsweise zu kur-

ze Felder, etwa für den Namen. Pflichtfelder müssen als sol-

che gekennzeichnet sein.

Erst wenn der potenzielle Käufer dem Anbieter ein gewis-

ses Vertrauen entgegenbringt, wird er das Geschäft abschlie-

ßen. Das gilt für einen Verkauf über die Ladentheke genau-

so wie beim Kauf über einen Online-Shop.

Ähnlich verhält es sich auch mit anderen Angeboten: Selbst

wenn die Mitgliedschaft bei einem Verein kostenlos ist, wer-

den die Umworbenen zurückschrecken, wenn dessen Ansin-

nen nicht klar erkennbar ist. Wichtig ist also Transparenz. Je

offener das Angebot dargelegt wird, desto vertrauenswürdi-

ger erscheint es. Statistiken, Zahlen oder andere belegbare

Fakten schaffen Transparenz. Weitaus stärkere Trust-Fakto-

ren stellen positive Testberichte oder Gütesiegel dar (Bild 9).

Strategien des Online-Marketings
Nicht nur die thematisch passenden grafischen Elemente und

Texte sowie deren Anordnung sorgen für eine gut funktionie-

rende Landingpage. Um eine Seite erfolgreich zu platzieren,

sollte man die wichtigsten Strategien des Online-Marketings

berücksichtigen: Eine umfassende Suchmaschinenoptimie-

rung (SEO) erhöht das Ranking. Weiter erhöhen die sozialen

Netzwerke wie Twitter, Facebook und Co den Bekanntheits-

grad und ermöglichen weitere Marketingmaßnahmen, sofern

die Besucher der Seite folgen. Auch diese Links können dem

herrschenden Seiten-Layout angepasst werden, um ein har-

monisches Gesamtbild zu erzeugen.

Dazu kommt die Kontaktpflege zu den Kunden über E-

Mail. Hier sorgen beispielsweise Newsletter dafür, den Kun-

den weitere Informationen zukommen zu lassen – und da-

durch den Umsatz zu steigern. Neben Banner-Werbung er-

Die Kaffee-Seite von Dallmayr liefert einen klaren, gut struktu-

rierten Aufbau (Bild 6)

Call-to-Action: Der Link zur kostenlosen Testversion einer

Vereins-Software steht an oberen Ende der Seite (Bild 7)

131www.webundmobile.de  1.2016

Landingpage Beyond Dev

Katharina Sckommodau
arbeitet als freiberufliche Autorin, Grafikerin

und Dozentin, unter anderem für die Akademie

der Bayerischen Presse und für Macromedia.

Sie veröffentlicht regelmäßig Beiträge in

renommierten Fachzeitschriften.

möglicht das Affiliate Marketing Kooperationen zwischen

Anbietern und dem Seiteninhaber: Dabei werden gegen eine

Vermittlungsprovision Werbe-Links platziert.

Das Sieben-Ebenen-Modell
Damit der Benutzer die gewünschte Interaktion erfolgreich

abschließt, beispielsweise einen Verkauf, ist es sinnvoll, den

Aufbau der Seite aus der Perspektive des Users zu planen.

Diese Vorgehensweise wird Conversion-Optimierung ge-

nannt. Für die Planung eines derartigen Aufbaus gibt es das

sogenannte Sieben-Ebenen-Modell.

Die erste Ebene, Relevanz: Entspricht der Inhalt dem, was

gesucht wird? Um dem User wirklich das zu bieten, was er

sucht, müssen die Schlüsselwörter so angelegt sein, dass der

Suchende tatsächlich auf der richtigen Seite landet. Beson-

ders bei einer exakten Eingabe der Suchbegriffe sollte das

funktionieren.

Die zweite Ebene, Vertrauen: Ist die Seite vertrauenswür-

dig? Neben den bereits beschriebenen Trust-Faktoren schaf-

fen auch grammatikalisch wie stilistisch einwandfreie Texte

sowie ein professionelles Layout Vertrauen. Dazu gehören

zum Beispiel auch individuelle Fotos; Bilder aus Datenban-

ken gilt es zu vermeiden. Auch hier kommt es wieder auf den

ersten Eindruck an.

Die dritte Ebene, Orientierung: Ist das Gesuchte zu finden?

Hier spielt, wie bereits erwähnt, ein klarer Seitenaufbau die

entscheidende Rolle. Dazu sollten neben den schlüssigen

Texten auch die Bilder ihr Übriges tun: Wurde beispielswei-

se nach Jacken gesucht, ist es zwar eine schöne Idee, die pas-

senden Hosen daneben abzubilden, nach dem Gesetz der

Nähe funktioniert diese Vorgehensweise jedoch nicht – sie

ist für den Suchenden eher verwirrend. Zudem sollte die Na-

vigation schlüssig und an einem präsenten Platz unterge-

bracht sein.

Die vierte Ebene, Stimulanz: Ist der Anreiz groß genug? Hier

geht es um Emotionen. Erst wenn diese beim Betrachter an-

gesprochen werden, findet er die Befriedigung seines Begeh-

rens auf der Seite. Wichtige Dinge ge-

hören dabei in den Vordergrund – sei es

durch die passenden Bilder, Kurztexte

oder zur Not auch über Signalfarben.

Auch eine begrenzte Verfügbarkeit

kann zum Kauf verführen, Beispiel

Amazon: Hier ist eine Systemkamera im

Angebot, der günstige Preis reizt be-

reits zum Kauf. Zudem sind nur noch

vier Stück auf Lager, eine Tatsache, die

die Verführung noch verstärkt.

Die fünfte Ebene, Sicherheit: Ist der

Abschluss riskant? Gibt es auf das Ge-

kaufte eine Garantie, so muss die Lan-

dingpage das auch vermitteln. Rück

gaberechte sollten ebenso deutlich kommuniziert werden

wie eventuell anfallende Kosten für den Versand. Bei Online-

Bestellungen, bei denen der Käufer ein Formular ausfüllen

muss, sollte darauf hingewiesen werden, wie mit den persön-

lichen Daten umgegangen wird. Für einen Abschluss braucht

der Betrachter das Gefühl, alles unter Kontrolle zu haben.

Die sechste Ebene, Komfort: Ist die Methode zum Zahlen

einfach? Hier geht es darum, dem Nutzer den Abschluss nach

einer positiven Entscheidung so leicht wie möglich zu ma-

chen. Dabei sollten Formulare nach dem bereits geschilder-

ten Muster konzipiert sein. Sind mehrere Daten fällig, helfen

Klappmenüs dabei, das Formular übersichtlich zu gestalten

Die siebte Ebene, Bewertung: Was kommt jetzt? Hier geht

es um die nicht mehr um die eigentliche Gestaltung der Sei-

te, sondern um alle Dinge, die nach dem Abschluss passieren.

So fühlt sich der Käufer beispielsweise gut betreut, wenn er

die Sendung nachverfolgen kann.

Fazit
Der Stellenwert einer guten Landingpage wird häufig unter-

schätzt – so wie auch der Aufwand, sie zu planen und zu fi-

nalisieren. Dieser Aufwand ist jedoch notwendig, um einen

Internetauftritt erfolgreich zu platzieren. Die Konkurrenz im

Netz wird immer größer – und im Internet ist es wie im wirk-

lichen Leben: Liegt das Geschäft in einer kleinen Seitenstra-

ße, so gibt es kaum Laufkundschaft. � ◾

Gleich zwei Bio-Siegel auf einer Seite

von Aldi-Süd erzeugen Vertrauen beim

Verbraucher (Bild 9)

Das Formular zur Anmeldung bei

iStock von Getty Images ist mit den

beiden grafisch einfach gestalteten

Eingabefeldern sehr benutzer

freundlich (Bild 8)

132 1.2016  www.webundmobile.de

OWL2Beyond Dev

D ie Web Ontology Language (OWL) erfreut sich immer

größerer Beliebtheit – für die semantische Suche im Web,

für Informationssysteme und Wissensdatenbanken ebenso

wie für smarte Softwaresysteme. Intelligente Maschinen be-

nötigen nicht nur Daten, sondern Wissen – generiert durch

Big-Data-Analysen und Machine-Based Learning.

Dies erlaubt ihnen, autonom zu handeln und zu interagie-

ren. Maschinen werden zu intelligenten Assistenten, die das

Verhalten ihrer Anwender verstehen und sich daran anpas-

sen können. Immer mehr Applikationen bauen daher auf

Wissen. Dieser Artikel zeigt Ihnen, wie Sie OWL2 zum Auf-

bau von Wissensdatenbanken einsetzen.

Die erste Version von OWL wurde bereits im Jahr 2004 ver-

abschiedet – im Wesentlichen basierend auf der Description

Logic (DL), verwaltet in XML und angetreten mit dem Ziel,

die maschinelle Auswertbarkeit des Resource Description

Frameworks (RDF) zu verbessern. Die praktischen Erfahrun-

gen zeigten jedoch schnell einen Mangel an Konstrukten, die

für die Modellierung komplexer Domänen notwendig waren.

Beispielsweise war die Anzahl von Datentypen einge-

schränkt, und es konnten keine fremden Ontologien durch

Importe eingebunden werden.

Zunächst informell fortentwickelt von einer Gruppe von

Anwendern, wurde OWL im Jahr 2012 schließlich als OWL2

als offizielle Empfehlung des

World Wide Web Consortiums

(W3C) herausgegeben. Eine

Vielzahl von Features wurden

verbessert und hinzugefügt.

So wurde OWL2 nicht nur

mit neuen Funktionen zur

Verwaltung von Fakten und

Restriktionen, sogenannter

Axiome, ausgerüstet, sondern

auch die Mechanismen für lo-

gische Schlussfolgerungen in

den sogenannten Reasonern

wurden erweitert und be-

schleunigt. Und damit etab-

lierten sich die Ontologien

schließlich zusammen mit

den ebenfalls aufkommenden

Graphdatenbanken zu neuen

Technologien für das Wis-

sensmanagement – Tendenz

stetig steigend.

Ein wichtiger Aspekt von

Wissensdatenbanken ist, dass

Semantische Web-Datenbanken mit OWL2 – eine Einführung.

Smarte Apps entwickeln
Wissensbasierte Applikationen entwickeln mit Ontologien

sie Daten und Strukturen standardisieren und damit die Inter

operabilität zwischen Systemen unterstützen. Durch ihre Se-

mantik können Ontologien von verschiedenen Systemen ge-

lesen, verstanden und somit in heterogenen Umgebungen als

zentrale Ressource gemeinsam genutzt werden.

Was aber die semantischen Web-Ontologien erst zur Grund-

lage smarter Applikationen macht, ist insbesondere ihre Fä-

higkeit zu logischen Schlussfolgerungen, basierend auf be-

reits bestehendem Wissen, die sogenannte Inferenz. Verant-

wortlich für die Inferenzprozesse sind die Reasoner. Ihre we-

sentlichen Aufgaben sind es, Objekte – in Ontologien Indivi-

duals genannt – zu klassifizieren, automatisiert neues Wissen

zu generieren sowie Inkonsistenzen innerhalb von Wissens-

datenbanken aufzudecken.

All dies geschieht im sogenannten Klassifizierungsprozess

des Reasoners. Dieser umfasst die Erzeugung und die Aktu-

alisierung des Graphen, der im Wesentlichen aus den zwei

Bereichen A-Box und T-Box besteht. Während die T-Box alle

Konzepte und Klassen, die Terminology Axioms, umfasst,

sind in der A-Box alle Assertion Axioms, die eigentlichen In-

stanzen und Objekte, hinterlegt.

Bezüglich aller Entitäten in einer Ontologie gilt es zu be-

achten, dass die aus der objektorientierten Programmierung

(OOP) bekannte Unique Name Assumption hier nicht gilt.

OWL2: Syntax und Semantik-Schicht (Bild 1)

133www.webundmobile.de  1.2016

OWL2 Beyond Dev

Diese besagt, dass die Namen von Klas-

sen innerhalb eines Geltungsbereichs im-

mer eindeutig sein müssen. In Ontologien

hingegen können aber durchaus mehrere

Klassen, Objekte oder Properties mit

demselben Namen existieren. Um diese

dennoch unterscheiden zu können, wur-

de für Ontologien der sogenannte Inter-

nationalized Resource Identifier (IRI) ein-

geführt – ein Namespace, der als Prefix,

durch ein Hash # getrennt, dem eigentli-

chen Bezeichner direkt oder als Alias vo-

rangestellt wird:

<!-- IRI: http://www.enapso.com/root#Customer -->

<owl:Class rdf:about=

"http://www.enapso.com/root#CustomerCustomer"/>

xmlns:enapso="http://www.enapso.com/root#"

:

<!-- IRI: http://www.enapso.com/root#Customer -->

<owl:Class rdf:about= "&enapso;Customer"/>

Mit OWL2-Ontologien können wir großartige Wissensdaten-

banken aufbauen – mit Definitionen und Daten, mit Restrik-

tionen und Regeln. Den wesentlichen Teil der Arbeit mit den

gespeicherten Informationen leisten dabei die Reasoner. Sie

sind es, die letztlich den statischen Konstrukten und Daten

Leben einhauchen und Ontologien so zu smarten Datenban-

ken machen.

Je nach Umfang und Komplexität der in einer Wissens

datenbank umfänglich vernetzten Informationen benötigen

die Inferenzprozesse schon mal eine gehörige Portion Re-

chenleistung und Speicherressourcen. Hier kommt ein Be-

griff ins Spiel, der Ihnen in der Welt des semantischen Webs

häufig begegnen wird: die sogenannte Tractability – die Lös-

barkeit eines Problems in einer vertretbaren Zeit.

Im schlimmsten Fall kann ein Problem sogar intractable, al-

so nicht innerhalb einer bestimmten Zeit oder sogar gar nicht

lösbar sein – denken Sie beispielsweise an eine Ontologie mit

der Komplexität einer natürlichen Sprache. Allerdings kön-

nen verschiedene Metriken wie zum Beispiel die Anzahl be-

stimmter Axiome die Überwachungsaufgaben erheblich ver-

einfachen.

Im Lauf dieses Artikels werden wir einige Best Practices

vorstellen. Zum einen, um die Lösbarkeit gerade auch wäh-

rend der Entwicklungs- und Testphasen sicherzustellen. Zum

anderen aber auch, um dauerhaft eine angemessene Perfor-

mance der Reasoner während ihrer Klassifizierungs- und In-

ferenzprozesse sowie der Abfragen zu gewährleisten.

Ontologien und Reasoner kooperieren eng, arbeiten aber

grundsätzlich getrennt voneinander. Während die Ontolo

gien die statischen Entitäten wie Klassen, Objekte und Pro-

perties enthalten, übernehmen die Reasoner die funktionalen

Aufgaben und sorgen damit für die Dynamik einer Ontologie.

Bekannte Reasoner sind HermiT, Pellet oder TrOWL. Sie un-

terscheiden sich in Performance, Ressourcennutzung, den

verwendeten logischen Algorithmen sowie im Funktions

umfang, beispielsweise dadurch, welche

Axiome verarbeitet werden können.

OWL2-Ontologien modellieren
OWL2 in Verbindung mit einem Reasoner

ist eine leistungsfähige Plattform, um na-

hezu alle Dinge der realen Welt sowie de-

ren Beziehungen und Abhängigkeiten

abzubilden. Ontologien werden prädesti-

niert dort eingesetzt, wo Informationen in

vernetzten und hierarchischen Baum-

strukturen organisiert werden und damit

zu Klassenmodellen (Taxonomien) einer bestimmten Domä-

ne werden. Eine klassische Taxonomie ist eine Personalhier-

archie – beispielsweise die eines Unternehmens.

Ontologien sind jedoch weit mehr als reine Taxonomien.

Sie sind Graphen, in denen die einzelnen Knoten untereinan-

der vernetzt sind. Veranschaulichen wir dies am Beispiel ei-

ner Universität mit mehreren Fakultäten – und natürlich auch

mit einer Personalhierarchie. Deren Struktur, also die eigent-

lichen Job-Positionen, ist abgelegt in der T-Box, dem Klassen-

diagramm, die Personen dahinter als Individuen innerhalb

der A-Box. Nun stellen Sie sich die Menge an Kursen verteilt

über die Fakultäten vor, die benötigten Ressourcen für einen

Kurs und die Teilnehmer der verschiedenen Kurse: Eine Viel-

zahl an Verlinkungen, die in klassischen SQL-Datenbanken

mit einer ebenso großen Vielzahl von n:m-Relationen abge-

bildet werden müssen – ganz zu schweigen davon, diese auch

unabhängig voneinander zu warten.

In einem Graphen dagegen werden lediglich atomare In-

formationen abgelegt und deren Verlinkungen werden nur

einmal pro Entität persistiert. Damit reduziert sich der War-

tungsaufwand, die Übersicht verbessert sich und strukturbe-

dingte Redundanzen werden vermieden.

Mit dem traditionellen Modell der objektorientierten Pro-

grammierung werden Klassenmodelle seit vielen Jahren mit

Baumstrukturen assoziiert und auch so abgebildet. Man mag

daher versucht sein, auch bei dem Begriff Ontologie zunächst

nur an Klassenmodelle mit ihren bekannten Generalisie-

rungs- und Spezialisierungsbeziehungen zu denken.

Ontologien bieten allerdings wesentlich mehr, insbesonde-

re in Bezug auf Standardisierungen und Ausdrucksstärke.

Zwar können in Ontologien ebenso wie in Taxonomien auch

Klassenbäume definiert werden, darüber hinaus aber auch

Beziehungen zwischen Klassen untereinander sowie die Zu-

ordnung von Individuals zu einer oder mehreren Klassen. On-

tologien unterstützen grundsätzlich Mehrfachvererbung.

Weiterhin können Sie mit Restriktionen die Inhalte Ihrer

Wissensdatenbanken kontrollieren. Beispielsweise in Form

von Aussagen, die wahr sein müssen, um weitere Aussagen

zuzulassen, oder auch, um Werte für Eigenschaften auf einen

bestimmten Datentyp oder bestimmte Wertebereiche zu be-

schränken.

Semantische Regeln (SWRL)
Ein weiteres leistungsfähiges Feature zur Modellierung von

OWL2-Ontologien sind Regeln, formuliert in der Semantic

Anonyme Klassen und Klassen

hierarchie (Bild 2)

▶

134 1.2016  www.webundmobile.de

OWL2Beyond Dev

Web Rule Language (SWRL). Sie ermöglichen in der Form Be-

dingung => Konsequenz, in anderen Worten auch if (condi-

tion) then { consequence }, während des Inferenzprozesses

automatisch neue Fakten – und damit neues Wissen – zu ge-

nerieren.

Stellen Sie sich vor, in der Domäne Ihrer Ontologie wäre je-

de Person älter als 18 Jahre berechtigt, ein Auto zu fahren,

und die Klasse LicensedDriver würde hierzu alle Personen

über 18 Jahre beschreiben. Erinnern Sie sich, dass jedes In-

dividual – hier also jede Person – mehreren Klassen zugeord-

net sein kann. Eine Abfrage aller Individuals der Klasse Li-

censedDriver würde also alle Personen ausweisen, die ein

Auto fahren dürfen. Das Problem an dieser Stelle ist, dass Per-

sonen nicht per se bei Erreichen des 18-ten Lebensjahres der

Klasse LicensedDriver zugeordnet werden. In der klassischen

Datenbank-Technologie müsste man sich hier aufwendiger

Trigger und Stored Procedures oder gar applikationsseitiger

Background-Threads bedienen, um die entsprechenden

Flags korrekt zu persistieren, um diese damit letztlich wieder

abfragbar zu machen. In Ontologien geht dies wesentlich ein-

facher mit einer Regel – und zwar ohne jeglichen Zwang, die

Daten selbst persistieren zu müssen. Hierzu dient die folgen-

de SWRL-Direktive:

Person(?x)

 ^ hasAge(?x, ?age

 ^ swrlb:greaterThanOrEqual(?age, 18)

 -> LicensedDriver(?x)

Der vordere Abschnitt dieser Regel bis zum Pfeil ist der Be-

dingungsteil. Der Reasoner sucht hier nach allen Personen ?x,

die in der Property hasAge einen Wert ?age haben und die-

ser größer oder gleich 18 ist. Falls diese Bedingung für das In-

dividual ?x zutrifft, wird dieses als LicensedDriver klassifi-

ziert und damit auch in allen Queries als solches zurückgelie-

fert – wie schon gesagt: Ohne dass dies explizit so gespeichert

ist. Beachten Sie, dass im Bereich der Reasoner mit vielen In-

vestitionen regelmäßig neue technologische Verbesserungen

eingebracht werden. Noch nicht alle Reasoner unterstützen

bereits SWRL oder deren vollen Sprachumfang. Hier ist aber

sicher schon bald mit umfänglichen Innovationen zu rechnen.

OWL2-Ontologie-Konzepte
Die wichtigsten Konzepte zum Design von Ontologien sind

Klassen (Classes), Eigenschaften (Properties), Objekte (Indi-

viduals) und Datentypen (Data Types). All diese werden auch

als Entitäten der Ontologie bezeichnet. Der Begriff der Enti-

tät mag für uns Entwickler zu Beginn verwirrend klingen, da

wir diese aus der Welt des Object-Relational Mapping (ORM)

und der Entity-Relationship-Modelle (ER) eher mit Klassen

assoziieren, die reale Dinge in unseren Applikationen be-

schreiben. Aber in Ontologien wird alles, was über eine ID –

den Internationalized Resource Identifier (IRI) – verfügt, als

Entität bezeichnet.

Bevor wir nun eine konkrete Ontologie erstellen und uns

mit deren Potenzialen beschäftigen, lassen Sie uns zuvor

noch einige grundlegenden Konzepte und Begriffe erläutern.

Tabelle 1 gibt einen Überblick dazu.

OWL2-Axiome
Die zentrale Komponente, um Wissen in OWL2 zu repräsen-

tieren, sind Axiome. Sie beschreiben die Fakten über Classes,

Individuals und Properties einer Domäne. Neben peripheren

Informationen wie beispielsweise Headern, Import-Direkti-

ven oder Prefixes (Aliases für IRIs) bestehen Ontologien im

Wesentlichen aus einem Satz von Axiomen und Theoremen.

Während Axiome als allgemein akzeptierte und wahre

Aussagen definiert sind, sind Theoreme Aussagen, die auf

Basis von Axiomen oder anderen Theoremen bewiesen wor-

den sind. Beide zusammengenommen geben den Objekten

in einer Ontologie ihre semantische Bedeutung. Allerdings

Tabelle 1: Grundlegende Konzepte und Begriffe

Klassen Klassen sind Mengen (Sets oder Collections) von
Objekten, im Rahmen von Ontologien also Mengen von
Individuals. Beispielsweise die Klasse Vehicle als Menge
aller Fahrzeuge. Klassen beschreiben den Typ von
Objekten, eine Art abstraktes Objekt, dessen Kriterien
und Restriktionen für alle Objekte des gleichen Typs
gelten.

Individuals Individuals sind konkrete Instanzen einer Klasse in der
Wissensdatenbank. Beispielsweise Osvaldo und Alex
sowie Osvaldo’s Ferrari und Alex’s Lamborghini sind
Individuals, hier also Instanzen der Klassen Person und
Vehicle – wenn auch in Bezug auf die Fahrzeuge leider
nur imaginäre. Achtgeben sollte man auf deren Namen
und damit auf die Lesbarkeit der Ontologie. Bei dem
Bezeichner Maserati könnte es sich zwar um eine
konkrete Instanz handeln. Allerdings wäre diese von
anderen Instanzen des gleichen Typs dann nur durch
ihren IRI zu unterscheiden und könnte eher für eine
Klasse gehalten werden. Bedenken Sie in diesem
Zusammenhang, dass Ontologien spezialisiert sind auf
semantische Anforderungen. Zur Verwaltung
umfangreicher Massendaten empfehlen sich
möglicherweise hybride Konzepte, auf die wir in einem
zukünftigen Artikel in diesem Magazin noch näher
eingehen werden.

Properties Properties repräsentieren Beziehungen, die wichtigsten
in OWL sind Object Properties und Data Properties.
Object Properties werden verwendet, um Verbindungen
zwischen Individuals zu beschreiben. Beispiel:

ObjectPropertyAssertion(hasCar "Osvaldo's

Ferrari" Osvaldo).

Data Properties hingegen beschreiben die Zuordnung
von Literalen zu Individuals. Beispiel:

DataPropertyAssertion(hasAge Osvaldo 29)

Annotations Annotations dienen dazu, zu jeder Entität einer
Ontologie Anmerkungen hinzuzufügen. Jede Annotation
besteht aus einer Annotation-Property und einem
Annotation-Wert. OWL2 kommt bereits mit einigen
eingebauten Annotations, beispielsweise label, comment
oder versionInfo, aber Sie können beliebige eigene
Anmerkungen hinzufügen, um Ihre Ontologien mit
zusätzlichen Informationen zu versehen und sie damit
leichter wartbar zu machen.

135www.webundmobile.de  1.2016

OWL2 Beyond Dev

werden sie dort lediglich unter

dem Sammelbegriff Axiome

geführt.

Es sind genau diese Axiome,

die es uns Menschen ebenso

wie den Reasonern und damit

unseren Applikationen erlau-

ben, das Wissen in einer Onto-

logie zu verstehen. Axiome ma-

chen Aussagen darüber, was richtig oder falsch ist. Sie be-

schreiben Daten und Beziehungen zwischen Entitäten eben-

so wie Restriktionen und Regeln. Sie sind die Grundlage für

die Reasoner, um neues Wissen logisch zu erschließen, wel-

ches der Ontologie nie explizit vermittelt wurde. Dieser Vor-

gang des Schlussfolgerns, der Inferenzprozess, bei dem neu-

es Wissen auf Basis von bestehendem Wissen maschinell ge-

neriert wird, ist einer der Eckpfeiler zur Entwicklung smarter

Applikationen.

Erzeugen der Wissensbasis
Nachdem wir nun die Hauptkomponenten, die Entitäten von

OWL2-Ontologien sowie deren Axiome, kennengelernt ha-

ben, lassen Sie uns nun einige Beispiele betrachten, um eine

bessere Vorstellung davon zu bekommen, wie wir konkret

vom Wissen in unseren Ontologien profitieren können.

Ontologien sind nicht nur geeignet, von Maschinen ver-

standen zu werden, sondern sie wurden genau dazu geschaf-

fen. Im Umkehrschluss bedeutetet das allerdings, dass sie

nun von uns Menschen, beispielsweise in Form von XML-Da-

teien, nicht mehr so leicht lesbar sind. Glücklicherweise be-

stehen Ontologien aber aus zwei Schichten, einer syntakti-

schen und einer semantischen. Die syntaktische ist unter

anderem durch die Manchester-Syntax oder auch die Func-

tional-Style-Syntax realisiert, welche beide untereinander

austauschbar und leicht verständlich sind. Bild 1 bietet Ihnen

einen besseren Überblick über diese Strukturen in OWL2.

In den Beispielen in diesem Artikel verwenden wir konse-

quent die Functional-Style-Syntax, da wir diese für einfacher

nachvollziehbar halten. Lassen Sie uns also einen Blick auf

ein erstes Klassenmodell werfen, eine simple Taxonomie in

einer Ontologie über Fahrzeuge:

Zeile 1: SubClassOf(Car Vehicle)

Zeile 2: SubClassOf(Ferrari Car)

Diese zwei einfachen Axiome beschreiben eine hierarchische

Struktur, in der Car eine Unterklasse von Vehicle und Ferra-

ri eine Unterklasse von Car ist. Hier sehen Sie bereits, wie ein-

fach es ist, ein Klassifizierungsschema in einer Ontologie auf-

zubauen. Wichtiger Unterschied zu einer Datenbank ist, dass

die Aussage Ferrari ist eine Unterklasse von Vehicle nicht ex-

plizit gespeichert sein muss, um als solche abgefragt werden

zu können.

Natürlich könnten wir diese Informationen auch in einer

Datenbank speichern und die Vererbung emulieren. Aber

Datenbanken sind spezialisiert auf Daten und performance-

optimiert in Bezug auf Abfragen und Aktualisierungen –

nicht jedoch auf Ausdrucksstärke oder gar Inferenzen inner-

halb eines Schemas. In anderen Worten: Daten, die nicht ex-

plizit in einer Datenbank hinterlegt worden sind, können aus

dieser auch nicht abgefragt werden – ganz im Gegensatz zu

Ontologien.

Assertions
Nachdem wir nun ein erstes Klassenmodell angelegt haben,

lassen Sie uns als Nächstes sehen, wie wir Individuals und

Properties zu unserer Ontologie hinzufügen:

Zeile 3: ClassAssertion(Mike Person)

Zeile 4: DataPropertyAssertion(hasAge Mike 40)

Zeile 5: ClassAssertion("Mike's Maserati" Maserati)

Zeile 6: ObjectPropertyAssertion(hasCar Mike "Mike's

Maserati")

Die obigen Axiome zeigen, wie eine Wissensdatenbank ge-

füllt wird mit Aussagen über Individuals, den sogenannten

Assertions. Im Gegensatz zu klassischen Datenbanken defi-

niert ein Ontologie-Schema keine Tabellen mit Zeilen und

Spalten oder Kollektionen mit Dokumenten. Vielmehr erhält

jede Instanz Daten ähnlich dem Modell der objektorientier-

ten Programmierung.

Die sogenannten ClassAssertions beschreiben die Zuord-

nung von Individuals zu Klassen. Die obigen Zeilen 3 und 5

definieren beispielsweise, dass Mike zur Klasse Person ge-

hört sowie dass die konkrete Instanz Mike’s Maserati zur

Klasse Maserati gehört.

Weitere Assertions sind DataPropertyAssertions sowie Ob-

jectPropertyAssertions. In der Zeile 4 im obigen Listing sagt

die Data Property Assertion hasAge, dass Mike ein Alter von

40 hat – wobei wir die Einheit Jahre für das Literal 40 bisher

nur vermuten, aber noch nicht wissen. Die Object Property

Assertion hasCar in der Zeile 6 hingegen sagt aus, dass Mike

das Auto Mike’s Maserati besitzt – also die Beschreibung ei-

ner Relation zwischen zwei Individuals.

Beachten Sie, dass wir bei den Property Assertions zwar In-

dividuals mit echten Daten erzeugen, aber keinerlei struktu-

relle Änderungen am Klassenmodell vornehmen. Im Gegen-

satz zu Tabellen-Strukturen kann jedes Individual in einer

Ontologie eigene Properties, Daten und Relationen enthalten

– insbesondere völlig unabhängig von seinen Klassenzuord-

nungen.

Property Restrictions
Auf den ersten Blick mag es erscheinen, als handele es sich

bei den Ontologien um nicht mehr als eine andere, vielleicht

sogar komplexere Art der Datenverwaltung. Aber die Proper-

ty Assertions leisten wesentlich mehr, als nur Werte und Ver-

knüpfungen zu verwalten. Als Entitäten innerhalb der Wis-

sensdatenbank repräsentieren diese die eigentlichen seman-

tischen Bedeutungen, wie die folgenden Axiome zeigen:

Zeile 7: ObjectPropertyDomain(hasEngine Vehicle)

Zeile 8: ObjectPropertyRange(hasEngine Engine)

Zeile 9: FunctionalDataProperty(hasAge) ▶

Falsche Schlussfolgerung,
dass Mike auch ein Motor ist

(Bild 3)

136 1.2016  www.webundmobile.de

OWL2Beyond Dev

Hier werden die einfachen Konzepte Domain und Range auf

Properties appliziert, um Restriktionen zu definieren, aber

auch, um damit weiteres Wissen erzeugen zu können.

Diese beiden mathematischen Konzepte stammen aus der

Set-Theorie, die wir hier nur grob anreißen können. Verein-

facht gesagt definiert die Domain einer Property die Elemen-

te der linken Seiten einer Relation und die Range die Menge

der Werte, die auf der rechten Seite einer Relation auftreten

können.

Beispiel: Durch die Deklaration der Axiome 7 und 8 im obe-

ren Listing können wir schlussfolgern, dass innerhalb der Do-

mäne unserer Ontologien alle Individuen, die einen Motor

haben, Instanzen der Klasse Vehicle sein müssen, und dass

alle durch hasEngine referenzierten Instanzen ein Motor sein

müssen.

Properties können außerdem functional sein, wie im obigen

Listing in der Zeile 9. Das bedeutet, dass ein Individual nur

eine einzige dieser Eigenschaft zugewiesen werden kann.

Während verständlicherweise eine Person nur ein Alter ha-

ben kann, könnte diese aber dennoch mehrere Autos besit-

zen. Weitere Charakteristiken von Properties sind: transitive,

symmetric, reflexive und noch einige weitere, die die seman-

tische Bedeutung von Properties noch erweitern.

Transitive Properties unterstützen zum Beispiel Ketten von

Beziehungen. Nehmen Sie exemplarisch die transitive Pro-

perty subRegionOf: Ist B eine subRegionOf A und ist C eine

subRegionOf B, dann gilt, dass auch C eine subRegionOf A

ist. Ein klassisches Beispiel für eine symmetrische Property ist

hingegen friendOf: Ist A friendOf B, dann gilt automatisch

auch B friendOf A – ohne dass diese Aussage explizit hinter-

legt wurde.

Auf Ontologien basierende Wissensdatenbanken sind der-

art ausdrucksstark, dass einige Ontologien sogar ausschließ-

lich aus Taxonomien (Klassenmodellen), Properties und Re

striktionen bestehen und so komplexe Domänen ohne ein

einziges Individual beschreiben. Sehr effektiv können dann

hybride Ansätze, beispielsweise in Kombination mit NoSQL-

Datenbanken, die semantischen Vorteile der Ontologien mit

der Performance von Big-Data-Ansätzen verbinden.

Class Restrictions
Weitere häufig in Ontologien verwendete Restriktionen sind

universal (only) und existential (some). Diese werden einge-

setzt, um Modelle genauer zu beschreiben. Lassen Sie uns

anhand eines Beispiels zeigen, wie diese Restriktionen wir-

ken und wie wir sie nutzen können:

Zeile 10: SubClassOf(Vehicle (hasEngine only Engine)

)

Zeile 11: SubClassOf(Person (hasCar some Car))

Das Axiom in der Zeile 10 bedeutet, dass die Klasse Vehicle

nun eine Unterklasse einer anonymen und namenlosen Klas-

se mit der Restriktion (hasEngine only Engine) ist. Dies be-

wirkt, dass für Instanzen der Klasse Vehicle und die Property

hasEngine ausschließlich Individuals der Klasse Engine als

konsistent akzeptiert werden.

Tabelle 2: Wichtige Aspekte

1 Vorsicht bei Domains und Ranges für Properties
Unbedacht definierte Domains und Ranges für Properties können
insbesondere bei größeren Ontologien leicht zu Inkonsistenzen
führen. Weiter unten in diesem Artikel finden Sie konkrete
Beispiele hierzu. Am besten dokumentieren Sie alle Restriktionen
sorgfältig mit Hilfe von Annotations, um unerwünschte
Inferenz-Seiteneffekte später leicht korrigieren zu können.

2 Besser some- als only-Restrictions verwenden
In einigen Fällen ist es besser, die existential (some) als die uni-
versal (only) Restriction zu verwenden, und zwar aus demselben
Grund wie bei den Domain- und Range-Restrictions. only macht
die Ontologie sehr restriktiv. Stellen Sie sich die only-Restriktion
hasWife only Women vor. Im Fall einer gleichgeschlechtlichen
Ehe würde dann aus Peter hasWife Paul automatisch schlusszu-
folgern sein, dass Paul eine Frau sein muss. In anderen Worten:
Seien Sie sich beim Einsatz zu starker Restriktionen wirklich
sicher. Was in kleinen Ontologien noch kein allzu großes Problem
darstellt, kann zur Notwendigkeit weitreicher Änderungen führen.

3 Vermeiden Sie vorgefertigte Design Patterns
Zwar können vorgefertigte Ontology Design Patterns (ODPs)
zur schnellen Implementierung einer Lösung für bestimmte
Probleme beitragen. Aber: ODPs sind häufig optimiert in Bezug
auf Ausdrucksstärke, die Expressivity, was mit einer Vielzahl
von Axiomen einhergeht, die Sie in für Ihren konkreten Einsatz
möglicherweise gar nicht benötigen. ODPs eignen sich sehr gut zu
Trainingszwecken und als Beispiele, sollten jedoch nicht einfach
blind übernommen werden. Im schlimmsten Fall können sie
unerwünschte und später nur schwer nachvollziehbare Effekte
für Ihre Ontologie bedeuten. Den Nachteil spüren Sie deutlich,
sobald die Ontologie wächst und die Reasoner dann durch die
Menge an Axiomen an Performanz verlieren.

4 Vermeiden Sie Performance-Fresser
Vermeiden Sie, wenn nicht zwingend erforderlich, Features wie
disjunctions, transitive Object Properties, disjoints oder inverse
Objekt-Beziehungen, um die Reasoner- und Query-Performance
Ihrer Ontologie zu verbessern. Inverse Properties wie beispiels-
weise hasCar zusammen mit isCarOf kosten Performance, weil die
umgekehrte Property immer neu generiert werden muss – und
das bedeutet einen hohen Aufwand für den Reasoner bei großen
Ontologien. Ähnliches gilt für transitive Properties: Auch hier
müssen gegebenenfalls viele neuen Verlinkungen geschaffen
werden. Die Regel hier ist: Höhere Ausdrucksstärke der Ontologie
geht auf Kosten der Performance. Die Kunst ist die perfekte
Balance.

5 Auswahl des optimalen OWL2 Profils
OWL2 offeriert einige sogenannte Profile, syntaktische Unter-
mengen von OWL2, die zwar funktionale Einschränkungen, dafür
aber verschiedene Vorteile abhängig vom jeweiligen Einsatzge-
biet Ihrer Ontologie bedeuten. Die verfügbaren Profile sind OWL2
EL, OWL2 QL und OWL2 RL. Jedes Profil ist eine Untermenge des
OWL2-Sprachumfangs und restriktiver als OWL2. Alle bieten zwar
geringere Ausdrucksstärke, dafür aber höhere Performance.
OWL2 EL ist optimiert für Ontologien mit einer hohen Anzahl an
Klassen beziehungsweise Properties. Der hauptsächliche Einsatz
ist, umfangreiche Domänen-Modelle zu beschreiben, und zwar
mit einer eher geringen Anzahl Instanzen.
OWL2 QL hingegen zielt eher auf Ontologien ab, bei denen es auf
die schnelle Beantwortung von Queries bei einer eher großen
Menge von Instanzen ankommt. OWL2 QL wurde insbesondere
für die einfachere Wartung und Abfrage von Daten in Wissensda-
tenbanken designt.
OWL2 RL schließlich wurde spezifiziert für Anwendungen bei de-
nen es auf die skalierbare Ausführung der Inferenzprozesse, also
der Reasoner, ankommt, ohne dabei allzu viel Ausdrucksstärke
zu opfern.

137www.webundmobile.de  1.2016

OWL2 Beyond Dev

Das Axiom in der Zeile 11 hingegen sagt aus, dass Indivi-

duals der Klasse Person über die Property hasCar mit einigen

Individuals der Klasse Car vernetzt sein kann. Eine Person

kann daher kein, ein einzelnes oder mehrere Autos besitzen.

Der generelle Aspekt hier ist, wie das bestehende Wissen

über unsere Domäne auf der Klassenebene repräsentiert

wird. Bild 2 zeigt, was wir konkret mit den beiden Axiomen

aus den Zeilen 10. und 11. in der Ontologie erzeugt haben.

Die für die Restriktion erzeugte anonyme Klasse, in Bild 2

in Grün dargestellt, sorgt dafür, dass Vehicle als ihre Unter-

klasse ebenso wie Car und Maserati als weitere Unterklassen

von Vehicle diese Restriktionen erben. Auf diese Art und Wei-

se werden Restriktionen durch den Klassenbaum propagiert,

was Ontologien mit einem leistungsfähigen Vererbungs- und

Constraint-Feature ausstattet, das man bei herkömmlichen

Datenbanken vergeblich sucht.

Der Sprachumfang von OWL2 enthält eine Vielzahl weite-

rer Axiome und Konzepte, die sicher den Umfang dieses Ar-

tikels sprengen würden. Wenn Sie bereits planen, Ontologi-

en in Ihren Applikationen einzusetzen, sei Ihnen zum einen

die W3C-Referenz-Dokumentation empfohlen. Zum anderen

können Sie aber auch schon praktische Erfahrungen sam-

meln mit Protégé, dem derzeit wohl am weitesten verbreite-

ten freien Ontologie-Management-Tool.

Mit Hilfe einer Vielzahl von Plug-ins können Sie dort auch

verschiedene Reasoner integrieren, DL- oder SPARQL-Que-

ries ausführen oder regelbasierte Technologien wie SWRL

anwenden. In den nächsten Ausgaben der web & mobile deve-

loper werden wir weiter ausführlich über diese Themen be-

richten.

Best Practices
Als Entwickler mögen Sie zum Einstieg nach Best Practices

und einigen Design-Patterns für Ontologien fragen. Grund-

sätzlich gibt es zunächst einmal zwei wesentliche Aspekte,

die man zum Design performanter Ontologien von Beginn an

im Auge haben sollte: die Lösbarkeit (Tractability), und die

Fähigkeit des Modells, konsistent zu bleiben, also in sich

schlüssig und widerspruchsfrei zu bleiben, insbesondere

dann, wenn die Ontologie wächst.

OWL2 stellt eine Vielzahl von Möglichkeiten bereit, um na-

hezu alle Dinge der realen Welt abzubilden. Der beste Weg,

ein Model vom individuellen Wissen ihrer konkreten Domä-

ne zu erstellen, hängt jedoch von verschiedenen Faktoren ab.

Natürlich ist die erwartete Größe der Ontologie ein solcher,

aber insbesondere die perfekte Balance zu finden zwischen

hoher Performance oder hoher Ausdrucksstärke auf der einen

Seite sowie der Menge an explizitem Wissen oder intensiver

Inferenzaufgaben für den Reasoner auf der anderen Seite,

stellt zuweilen eine Herausforderung dar. In Tabelle 2 wollen

wir Ihnen daher einige wichtige Aspekte rund um diese Ent-

scheidungen mit auf den Weg geben.

Reasoner
Wie wir bis hierher schon erfahren haben, spielen die Reaso-

ner eine zentrale Rolle in Wissensdatenbanken. Nicht nur,

weil sie während des Inferenzprozesses für die Generierung

neuen Wissens basierend auf Axiomen und Regeln verant-

wortlich sind. Auch während des Entwicklungsprozesses für

eine Ontologie dienen sie als wertvolles Werkzeug, um ihre

Konsistenz und Erfüllbarkeit zu überprüfen. Sie erklären in

nachvollziehbarer Weise, welche Axiome für automatisches

generiertes Wissen, also Schlussfolgerungen, herangezogen

wurden, und ebenso, auf Basis welcher Widersprüche eine

Ontologie inkonsistent wurde.

In Bild 3 sehen Sie, wie aufgrund der Open World Assump-

tion (OWA) und des Axioms aus Zeile 12 durch den Reasoner

das Individual Mike als Mann und fälschlicherweise ebenso

als Motor klassifiziert wird:

Bezüglich der Erfüllbarkeit einer Ontologie stellen Sie sich

die Klasse Airplane als Nachfahre von Vehicle vor und ver-

hindern Sie mittels einer DisjointClasses Direktive, dass ein

Individual gleichzeitig ein Auto und ein Flugzeug sein kann.

Dies wird sicher eine Weile gutgehen, bis zu dem Tag, an dem

die Autos nicht nur selbst fahren, sondern vielleicht mit Flü-

geln auch die dritte Dimension erobern. Ein Individual der

Klasse FlyingCar wäre dann unerfüllbar.

Open World Assumption
Lassen Sie uns eine spezielle Charakteristik von Ontologien

im Allgemeinen und der Reasoner im Speziellen an einem

Beispiel verdeutlichen. Hierzu fügen wir das folgende Axiom

zur unserer Ontologie hinzu und starten den Reasoner:

Zeile 12: ObjectPropertyAssertion(

 hasEngine "Mike's Maserati" Mike

)

Das Ergebnis dieses Axioms ist erst einmal genau so, wie die

Aussage es beschreibt, nämlich dass das Individual Mike’s

Maserati das Individual Mike als Engine hat. Was sich hier

zunächst als simple Fehleingabe darstellt, kann in einer On-

tologie aber leicht zu weitreichenden Konsequenzen führen.

Denn sobald Sie den Reasoner starten, schlussfolgert dieser,

dass Mike ein Mann, aber ebenfalls ein Motor ist. Wenn Sie

sich nun wundern warum, schauen Sie auf das Axiom in Zei-

le 8. Dort ist für die Property hasEngine eine Range spezifi-

ziert, die besagt, dass alle von ihr referenzierten Individuals

vom Typ Engine sind.

An dieser Stelle sei nochmals deutlich darauf hingewiesen,

dass es sich in Ontologien um Aussagen und nicht um harte

Datenbank-Constraints handelt. Ontologien lassen die Auf-

nahme von Aussagen erst einmal zu, und die Reasoner über-

nehmen anschließend die logischen Inferenz-Aufgaben.

Verantwortlich dafür ist das OWL2-Paradigma, dass Onto-

logien und Reasoner auf Basis der Open World Assump ▶

Ausweis von

Inkonsistenzen in

einer Ontologie

(Bild 4)

138 1.2016  www.webundmobile.de

OWL2Beyond Dev

tion (OWA) arbeiten. Diese besagt vereinfacht ausgedrückt,

dass eine fehlende Aussage nicht automatisch bedeutet, dass

sie falsch ist, im Umkehrschluss also auch, dass eine Aussa-

ge durchaus wahr sein kann, auch wenn sie nicht ausdrück-

lich als solche angegeben wurde. Nur der Vollständigkeit hal-

ber: Die Closed World Assumption (CWA) besagt, dass alles,

was nicht ausdrücklich als wahr bekannt ist, falsch sein muss

– auch wenn dies in Ontologien nicht zur Anwendung kommt.

Aber zurück zu unserem Beispiel: Da wir definieren, dass

die Range der Property hasEngine immer eine Engine ist,

klassifiziert der Reasoner bei der Analyse des Axioms in Zei-

le 12 Mike als Motor.

Und genau dieser Effekt möglicherweise unzutreffender

Inferenzen ist der Grund, warum Sie Domains und Ranges für

Properties mit Bedacht einsetzen sollten, insbesondere dann,

wenn Sie den Aufbau umfangreicherer Ontologien planen.

Inkonsistenzen in Ontologien
Ontologien werden dann inkonsistent, wenn der Reasoner

aufgrund von Widersprüchen zwischen verschiedenen Axio-

men keine neuen Fakten mehr für eine Ontologie, also kein

neues Wissen mehr generieren kann, was für eine Ontologie

ein Ausschlusskriterium darstellt.

Beispiel: Belassen Sie die bisherigen Axiome in der Onto-

logie, ergänzen Sie das nachfolgende Axiom und lassen Sie

den Reasoner erneut laufen:

DisjointClasses(Man Engine)

Der Reasoner wird nun ausweisen, dass die Ontologie inkon-

sistent ist (Bild 4).

Der Reasoner stellt eine Erklärung für die Inkonsistenz be-

reit. Hier sagt er: »Sie sagen, dass Mike ein Mann ist, dass

Mike der Motor eines Maseratis sei, dass aber hasEngine nur

Motoren beschreiben kann und dass Motoren und Männer

nicht das Gleiche sind« – das ist eindeutig eine logische In-

konsistenz.

Fazit
Das Potenzial von OWL2-Ontologien ist einfach riesig: Sie

vereinen Ausdrucksstärke für eine semantische Wissensre-

präsentation mit einem standardisierten und maschinenles-

baren Format und sind darüber hinaus bereits in einer Viel-

zahl von wirtschaftlichen und sozialen Anwendungsfeldern

etabliert.

Die Reasoner ebenso wie die Abfrage- und Regelsprachen

machen OWL2 nicht nur zur zentralen Technologie für das se-

mantische Web, sondern ebenso zur Grundlage von Anwen-

dungs- und sektorübergreifenden Wissensdatenbanken.

Für uns als Software-Entwickler sind Ontologien die Basis

für neue Lösungen rund um Smart Data. Sie verbessern die

Qualität unserer Daten durch Konsistenz, unterstützen Se-

mantik in deren Modellen und Abfragen, vereinfachen deren

Wartung und erlauben die automatische, aber kontrollierte

Generierung von neuem Wissen.

Es lohnt sich also, sich mit Ontologien und OWL2 ausei

nanderzusetzen, neue Applikationen smart zu machen und

damit letztlich die User-Experience zu verbessern. In den

nächsten Ausgaben der web & mobile developer werden wir

Sie gerne weiter auf dem Laufenden halten. � ◾

�� �Enapso Smart Solution Projekt
https://enapso.org
https://www.innotrade.com

�� �Description logic (Wikipedia)
https://en.wikipedia.org/wiki/Description_logic

�� �Resource Description Framework (RDF)
www.w3.org/RDF

�� �Internationalized Resource Identifiers (IRIs)
https://www.ietf.org/rfc/rfc3987.txt

�� �Objektrelationale Abbildung (Wikipedia)
https://de.wikipedia.org/wiki/Objektrelationale_
Abbildung

�� �Entity-Relationship-Modell (Wikipedia)
https://de.wikipedia.org/wiki/Entity-Relationship-Modell

�� �OWL 2 Web Ontology Language - Manchester Syntax
www.w3.org/TR/owl2-manchester-syntax

�� �OWL 2 Web Ontology Language - Structural Specification
and Functional-Style-Syntax
www.w3.org/TR/owl2-syntax

�� �OWL 2 Web Ontology Language
www.w3.org/TR/owl2-overview

�� �protégé - Stanford University
http://protege.stanford.edu

�� �SPARQL Query Language for RDF
www.w3.org/TR/rdf-sparql-query

�� �Ontology Design Patterns
http://ontologydesignpatterns.org/wiki/Main_Page

Links zum Thema

Osvaldo Aguilar Lauzurique
ist Informatik-Ingenieur mit über zehn Jahren

Erfahrung in den Bereichen Webentwicklung,

künstliche Intelligenz, Software-Architekturen

und Datenbankdesign. Er ist aktiver jWeb

Socket-Committer.

Alexander Schulze
ist Software-Architekt und IT-Consultant mit

über 25 Jahren Erfahrung. Er ist Gründer von

jWebSocket, Fachautor und Sprecher auf inter-

nationalen Konferenzen.
www.innotrade.com

TTrainings WWebinare

DDe v b ooks

Praxisorientierte
Präsenztrainings

Bequem lernen
ohne Reisen

Themenrelevantes
Wissen

A Apps
E E v ent s

MM
agazine

Lernen von
unterwegs

Austausch mit
Experten vor Ort

Monatliche
Updates

Katalog herunterladen
und Fortbildung auswählen

Katalog
2016
unter

developer-
media.de

Ihr Ansprechpartner:
Fernando Schneider – Key Account Manager – developer media
Telefon: +49 (0)89 74117-831 – E-Mail: fernando.schneider@developer-media.de

140 1.2016  www.webundmobile.de

RechtBeyond Dev

Das IT-Sicherheitsgesetz in Kraft getreten, die

Vorratsdatenspeicherung eingeführt, Safe

Harbor gekippt – 2015 war in datenschutzrecht-

licher Hinsicht ein sehr ereignisreiches und zu-

gleich spannendes Jahr. Und viele Datenschüt-

zer sind vermutlich der Meinung, dass der Erlass

des IT-Sicherheitsgesetzes ein guter Schritt in

die richtige Richtung war, die Vorratsdatenspei-

cherung jedoch ein Schritt in die Gegenrichtung.

Im gleichen Zeitraum, in denen die deutsche

Bundesregierung diese beiden Gesetzespakete

auf den Weg gebracht hat, ist es einem Jurastu-

denten und Datenschutzaktivisten aus Öster-

reich tatsächlich gelungen, sowohl Facebook

und die irische Datenschutzaufsichtsbehörde als

letztlich auch die gesamte sogenannte Safe-Har-

bor-Regelung nicht nur zu hinterfragen, sondern

diese sogar gänzlich zu Fall zu bringen.

Es gibt also einige wichtige Neuerungen im

Datenschutzrecht. Man kann und wird wohl lan-

ge über einzelne Details diskutieren – Fakt ist je-

doch, dass insbesondere Betreiber, Designer und

Programmierer von Internetseiten daran nicht vorbeikom-

men. Dies betrifft in erster Linie das IT-Sicherheitsgesetz,

aber natürlich auch die Safe Harbor-Regelung.

Sicherer Hafen
Anfang des neuen Jahrtausends, nämlich 2000, hat die Euro-

päische Union mit den USA ein Abkommen zur sicheren

Transatlantik-Übertragung persönlicher Daten vereinbart.

Die Daten von EU-Bürgern sollten auf dem nordamerikani-

schen Kontinent einen »sicheren Hafen« finden. Folgerichtig

erhielt dieses Abkommen die Bezeichnung Safe Harbor.

Primäres Ziel dieser Regelung war es, bei der Übermittlung

von personenbezogenen Daten aus einem EU-Mitgliedsstaat

in die Vereinigten Staaten dem hiesigen Datenschutz-Niveau

entsprechende Rahmenbedingungen und damit Rechtssi-

cherheit für europäische Unternehmen zu schaffen.

Amerikanische Unternehmen können sich zu diesem

Zweck in eine Liste des US-Handelsministeriums eintragen,

dies allerdings auf freiwilliger Basis (Bild 1). Dadurch konnte

die Einhaltung essenzieller Datenschutzregelungen über-

prüft und bei etwaigen Verstößen auch sanktioniert werden.

Das Safe-Harbor-Abkommen war letztlich als Voraussetzung

dafür gedacht, dass Daten mit Personenbezug aus Europa

auch ohne ausdrückliche Einwilligung der Betroffenen in die

Diverse Neuerungen in puncto Datenschutz beschäftigen Designer,

Programmierer und Betreiber von Websites.

Datenschutz
Sichere Häfen und gespeicherte Vorratsdaten

USA transferiert werden konnten; innerhalb Europas war und

ist dies hingegen unproblematisch.

Als Alternative zu Safe Harbor können auch die sogenann-

ten EU-Standardvertragsklauseln genutzt werden. Hierbei

handelt es sich um exakte vertragliche Vorgaben seitens der

EU-Kommission, welche in möglichst unveränderter Form

zum Einsatz kommen sollte. International agierende Konzer-

ne können außerdem interne Regelungen (die sogenannten

Binding Corporate Rules) formulieren und umsetzen.

Allerdings war die Nutzung des Safe Harbor-Abkommens

bis zur Entscheidung des Europäischen Gerichtshofs (EuGH,

Urteil vom 6. Oktober 2015, Az. C-362/14) eine vergleichs-

weise beliebte Methode, eine datenschutzrechtlich zulässige

und sichere Datenübermittlung zu realisieren. Nach dem Ur-

teil des EuGH kann jedoch der sichere Hafen nicht mehr als

solcher eingestuft werden. Auch wenn diese Entscheidung

gegenüber der irischen Datenschutzaufsichtsbehörde und

mittelbar gegen Facebook ergangen ist, hat sie gleichwohl

weitreichende Folgen für alle diejenigen, die personenbezo-

gene Daten aus Europa in die USA übertragen.

Cloud-Speicherdienste wie zum Beispiel Dropbox, soziale

Medien wie Facebook, oder auch sonstige IT-Dienstleister in

den vereinigten Staaten – sie alle sind von der Ungültigkeit

des Safe-Harbor-Abkommens betroffen. Es gibt aber natür-

Datenbank mit den bereits für Safe Harbor registrierten Unternehmen (Bild 1)

141www.webundmobile.de  1.2016

Recht Beyond Dev

lich auch Anbieter, die bereits reagiert haben, darunter bei-

spielsweise Microsoft, das seine Office-365-Lösung mit der

Beschränkung des Server-Standorts auf Europa anbietet.

IT-Sicherheit
Das Gesetz zur Erhöhung der Sicherheit informationstech

nischer Systeme (IT-Sicherheitsgesetz) ist hierzulande am

25. Juli 2015 in Kraft getreten. Primär werden hierdurch Un-

ternehmen aus kritischen Bereichen der Infrastruktur zur

besseren Absicherung ihrer IT-Systeme verpflichtet.

Provider dürfen beispielsweise aus Gründen der Störungs-

vermeidung Verbindungsdaten ihrer Kunden für einen Zeit-

raum von maximal sechs Monaten speichern. Gleichzeitig be-

trifft eine ebenfalls eingeführte Neuregelung im Telemedien-

gesetz (TMG), nämlich dessen § 13 Abs. 7, faktisch alle An-

bieter von »geschäftsmäßig angebotenen Telemedien«, also

jeden Betreiber einer nicht nur rein privaten Internetseite.

Diese müssen inzwischen die nach dem Stand der Technik

möglichen Maßnahmen zur Absicherung ihrer IT-Systeme er-

greifen, andernfalls riskieren sie ein Bußgeld und eventuell

auch eine wettbewerbsrechtliche Abmahnung. Diese Pflicht

gilt nach Maßgabe des Gesetzgebers jedenfalls so weit, wie

dies technisch möglich und wirtschaftlich zumutbar ist. Wel-

che Maßnahmen von wem bis wann zu realisieren sind, ist

noch immer nicht so genau klar.

Ob jetzt jeder Webshop zum Beispiel eine verschlüsselte

Verbindung ermöglichen muss, wie genau Hauptverbrei-

tungswege von Schadsoftware eingedämmt werden können

und ob das regelmäßige Einspielen von Updates, Sicherheits-

patches et cetera ausreicht, muss die Zukunft zeigen. Wich-

tig ist sicherlich auch der Aspekt, dass im Rahmen von Ver-

trägen mit Dritten, wie zum Beispiel Online-Werbepartnern,

eine Festlegung entsprechender Pflichten erfolgen sollte.

Vorratsdatenspeicherung 2.0
Nachdem Deutschland vor Jahren bereits einmal versucht

hat, die Vorratsdatenspeicherung einzuführen, ist 2015 sozu-

sagen die Version 2.0 in Kraft getreten. Notwendig wurde

diese erneute Gesetzesnovelle, weil das Bundesverfassungs-

gericht die ursprüngliche Regelung aus dem Jahre 2007 als

unvereinbar mit dem grundrechtlich garantierten Post- und

Fernmeldegeheimnis aus Art. 10 Grundgesetz (GG) und da-

mit als verfassungswidrig eingestuft hatte.

Mit Urteil vom 8. April 2014 (Az. C-293/12 und C-594) hat

dann der EuGH nachgezogen und die EG-Richtlinie über die

Vorratsspeicherung von Daten, die bei der Bereitstellung öf-

fentlich zugänglicher elektronischer Kommunikationsdiens-

te oder öffentlicher Kommunikationsnetze erzeugt oder ver-

arbeitet werden, für ungültig erklärt.

Nach einigen Korrekturen ist dann am 16. Oktober 2015

das Gesetz zur Neuregelung der Telekommunikationsüber-

wachung und anderer verdeckter Ermittlungsmaßnahmen

abgesegnet worden. Hauptbestandteil dieser Novelle ist die

Verpflichtung von Telekommunikationsanbietern zur Spei-

cherung von sogenannten Verkehrsdaten für zehn Wochen,

Standortdaten von Handys sind hingegen nur vier Wochen

lang aufzubewahren. Ausnahmen gibt es ausschließlich für

soziale und kirchliche Beratungsstellen, wie etwa die Tele-

fonseelsorge. Daten von Rechtsanwälten, Ärzten oder auch

Steuerberatern dürfen hingegen gespeichert werden.

Whistleblower
Gleichzeitig wurde ein neuer Straftatbestand eingeführt,

nämlich die sogenannte Datenhehlerei. Normiert werden soll

sie in § 202d des Strafgesetzbuches (StGB). Diese Norm hat

mit der VDS an sich nichts zu tun, sie stellt wohl eher einen

Anti-Whistleblower-Paragrafen dar.

Mit Freiheitsstrafe bis zu fünf Jahren oder mit Geldstrafe

kann derjenige bestraft werden, der Daten, die ein anderer

ausgespäht oder sonst durch eine rechtswidrige Tat erlangt

hat, sich oder einem anderen verschafft, einem anderen über-

lässt, verbreitet oder sonst zugänglich macht, um sich oder ei-

nen Dritten zu bereichern oder einen anderen zu schädigen.

Daten sind hierbei nur solche, die elektronisch, magnetisch

oder sonst nicht unmittelbar wahrnehmbar gespeichert sind

oder übermittelt werden (§ 202a Abs. 2 StGB).

Diese neue Strafnorm ist spätestens den Veröffentlichungen

von Edward Snowden in der Diskussion. Pikant an der Neu-

regelung ist, dass für die Presse zwar eine Ausnahme vorge-

sehen ist. Diese Privilegierung gilt jedoch nur für »berufsmä-

ßig handelnde Journalisten«. Somit dürften also beispielswei-

se ehrenamtlich tätige Blogger et cetera nicht erfasst sein.� ◾

�� �Datenbank mit den bereits für Safe Harbor registrierten
Unternehmen
https://safeharbor.export.gov/list.aspx

�� �Standardvertragsklauseln der EU-Kommission
http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2010:039:0005:0018:DE:PDF

�� �Blog des Autors zum Thema Online-Recht für Webmaster
http://webmaster-onlinerecht.de

�� �Blog des Autors zum Verbraucherrecht online
http://verbraucherrechte-online.de

�� �Weitergehende Informationen zum Thema E-Commerce
http://rechtssicher.info

�� �Video-Trainings
www.video2brain.com/de/trainer/michael-rohrlich

Links zum Thema

Michael Rohrlich

ist Rechtsanwalt und Fachautor aus Würselen.

Seine beruflichen Schwerpunkte liegen

auf dem Gebiet des Online-Rechts und des

gewerblichen Rechtsschutzes.
www.rechtssicher.info

142 1.2016  www.webundmobile.de

Trends am ArbeitsmarktArbeitsmarkt

Monatliches Ranking

Arbeiten in der
Großstadt

Digitalisierung und Industrie 4.0

sind die Schlagworte für die An-

passungen, welche die deut-

schen Unternehmen gegen-

wärtig vornehmen. Nur wenige

warten noch ab, viele stellen

gerade die Agenda dafür auf

und manche haben bereits mit

der Umsetzung begonnen –

und alle brauchen dafür Ent-

wickler. Folglich sagen alle Pro-

gnosen voraus, dass der Mangel

an Software-Entwicklern auch

in den nächsten Jahren anhalten

wird. Im Umkehrschluss bedeu-

tet das für alle, die heute schon

als Entwickler arbeiten, dass sie

sich ihren Arbeitgeber aussu-

chen können. Bis zu einem ge-

wissen Grad gilt das auch für

den Arbeitsort. Allerdings wer-

den mehr als die Hälfte der An-

gebote für die 15 größten deut-

schen Städte ausgeschrieben.

Wer einen Job als Web-ent

wickler in einer der Big-15-

Städte sucht, kann diesen auch

nach der neuesten Auswer-

tung am leichtesten in Mün-

chen (3091 Treffer), Berlin

(252 Treffer) oder Hamburg

(2134 Treffer) finden (Bild 1).

Allerdings belegt Berlin wieder

mit deutlichem Abstand den

zweiten Platz, der im Vormonat

ganz knapp an Hamburg ging.

Über 1000 Treffer lieferte die

Abfrage zudem noch für Frank-

furt, Düsseldorf und Stuttgart.

Köln liegt auf dem siebten

Rang. Insgesamt sind laut der

aktuellen Auswertung rund

66 Prozent der Jobs für Web

entwickler in den Big-15-Städ-

ten zu finden.

In Bayern, Baden-Württem-

berg, NRW und Berlin gibt es

derzeit die meisten Jobangebo-

te für Mobile-Entwickler

(Bild 2). Die durchgeführte Aus-

wertung nach Städten zeigte,

dass in München, Berlin, Ham-

burg und Frankfurt die besten

Adressen für arbeitsuchende

App-Entwickler sind. Mit 64,4

Prozent liegt der Anteil der Jobs

in Großstädten ähnlich hoch wie

bei den Webentwicklern.

Die Abfrage der in Angeboten

nachgefragten Technologie-

kenntnisse zeigte einen leich-

ten Rückgang der Gesamtzahl

der Treffer um 1,4 Prozent. Ge-

gen den allgemeinen Trend ver-

stärkte sich die Nachfrage nach

Cloud- sowie nach iOS-Kennt-

nissen. Tabelle 1 zeigt den ak-

tuellen Stand der Nachfrage

nach Technologiekenntnissen.

Die in Stellenangeboten mit

großem Abstand am häufigsten

genannte Programmiersprache

ist weiterhin Java. Sowohl in der

Datenbank von Jobkralle.de als

auch in der von StepStone lag

Java am Erhebungsstichtag mit

großem Vorsprung vorne. Auf

dem zweiten Platz folgt bei

Jobkralle die Skriptsprache PHP,

während bei StepStone C++ am

zweithäufigsten nachgefragt

wurde. Bei Jobkralle kam C++

nur auf dem vierten Rang.

HTML, JavaScript und C# folgen

bei StepStone auf den Plätzen

drei bis fünf und bei Jobkralle

schafften es ebenfalls C# und

C++ sowie die SAP-Datenbank-

sprache ABAP in die Top 5.

A r b e i t s m a r k t
Trends und Jobs für Entwickler

* Prozentualer Anteil der Treffer

Jobs für Webentwickler

3,4 %Hannover

2,7 %Nürnberg

9,4 %Übrige 6

16,9 %Berlin

20,7 %München

8,2 %Düsseldorf

14,4 %Hamburg

7,6 %Stuttgart

10,3 %Frankfurt/Main

6,4 %Köln

web & mobile developer 1/2016�

Großstädte: Mehr

als 62 Prozent der

Jobangebote für

Webentwickler

entfallen auf die

erstgenannten vier

Städte (Bild 1)

Jobs für Mobile-Entwickler

2,6 %Sachsen

1,9 %Rheinland-Pfalz

5,1 %Übrige 7

16,7 %Baden-Württemberg

21,1 %Bayern

11,4 %Hessen

14,9 %Nordrhein-Westfalen

10,7 %Hamburg

12,1 %Berlin

3,5 %Niedersachsen

web & mobile developer 1/2016�

Bundesländer: Mehr

als 50 Prozent bieten

Jobs in Bayern, Baden-

Württemberg und

NRW (Bild 2)

Tabelle 1

Rang Techno-
logie

Anteil *

1 Cloud 14,5 %

2 MySQL 11,3 %

3 SharePoint 9,6 %

4 HTML5 9,2 %

5 Responsive
Web

8,2 %

6 Big Data 6,4 %

7 Microsoft
SQL Server

6,0 %

8 Android 6,0 %

9 Windows
10

5,9 %

10 iOS 5,6 %

11 CSS3 4,4 %

12 Angular.js 3,9 %

13 ASP .NET 2,9 %

14 WPF 2,4 %

15 NoSQL 2,2 %

16 WCF 1,5 %

143www.webundmobile.de  1.2016

Trends am Arbeitsmarkt Arbeitsmarkt

Bitkom

Software als Umsatz-
lokomotive

Gemäß aktueller Bitkom-Zah-

len hat die ITK-Branche ihre

Position als zweitgrößter Ar-

beitgeber gefestigt. Das Wachs-

tum an Arbeitsplätzen findet

dabei ausschließlich in den IT-

Unternehmen statt, auf die

794.000 Beschäftigte entfallen.

Der Umsatz der Branche ist

2015 laut vorläufigen Zahlen

auf 156 Milliarden Euro ange-

wachsen – das sind 1,9 Prozent

mehr als im Vorjahr. Wachs

tumstreiber bleibt die Informa-

tionstechnologie. Die Umsätze

sollen im Jahr 2015 um 3,5 Pro-

zent auf 80,4 Milliarden Euro

angestiegen sein, wobei der Be-

reich Software mit einem Plus

von 5,4 Prozent auf 20,1 Milliar-

den Euro das stärkste Wachs-

tum verzeichnet (Bild 3).

Über die vergangenen Jahre

kontinuierlich zugelegt hat das

Geschäft mit IT-Dienstleistun-

gen wie IT-Beratung und das

Projektgeschäft, welches 2015

um 3,0 Prozent auf 37,3 Milliar-

den Euro gewachsen ist. »Die

Anbieter profitieren davon, dass

Unternehmen aller Branchen

ihr Geschäft auf die Digitalisie-

rung ausrichten«, so Bitkom-

Chef Rohleder. Überraschend

positiv entwickelt sich in diesem

Jahr zudem der Umsatz mit IT-

Hardware, der um 2,8 Prozent

auf 23,0 Milliarden Euro wach-

sen soll.

Bitkom

Prognose für 2016

Für 2016 soll der ITK-Gesamt-

markt weiter wachsen. Der

Branchenverband Bitkom er-

wartet ein Umsatzwachstum

um 1,5 Prozent auf 158,4 Milliar-

den Euro. Neben einem voraus-

sichtlich schwächeren Geschäft

mit PCs und Sättigungseffekten

bei Endgeräten der Telekom-

munikation sorge vor allem der

VW-Effekt für Unsicherheit bei

IT-Dienstleistern und Software-

Anbietern. »Nicht nur die Auto-

mobilhersteller der Volkswa-

gen-Gruppe sind zurückhal-

Zahl des Monats
In Deutschland arbeiten inzwischen 1.002.000 Menschen in ITK-Unternehmen

(IT, Telekommunikation und Unterhaltungselektronik). In den vergangenen fünf Jahren sind rund

135.000 neue Arbeitsplätze entstanden. Allein im Jahr 2015 kamen fast 25.000 neue Jobs dazu.
Quelle: Bitkom.org

tend, die Unsicherheit setzt sich

über Wettbewerber und Zulie-

ferer fort und endet bei Städten

und Gemeinden, die stark auf

Steuereinnahmen der Automo-

bilindustrie angewiesen sind«,

so Rohleder. Eine detaillierte

Marktprognose will der Verband

im Vorfeld der CeBIT 2016 vor-

stellen.

StepStone

Jobbörse in den Top 5

Was haben Wikipedia, Google,

WhatsApp, Skype und StepSto-

ne gemeinsam? Sie gehören zu

den fünf beliebtesten Online-

Marken der Deutschen! In der

von amerikanischen Unterneh-

men dominierten Online-Bran-

che ist StepStone damit das

einzige Unternehmen mit

Hauptsitz in Deutschland unter

den Top 5. Das ist das Ergebnis

einer repräsentativen Befra-

gung von 700.000 Verbrau-

chern durch das Handelsblatt

und das Marktforschungsinsti-

tut YouGov. Die deutsche On-

line-Jobbörse StepStone belegt

in der Rangfolge der beliebtes-

ten Internetmarken Platz 5.

IT-suppliers.com

Mobil in die Zukunft

Die Zeichen für die Mobile Eco-

nomy stehen weiter auf Wachs-

tum. Nach einer Umfrage von

IT-suppliers.com glauben na-

hezu drei Viertel der befragten

Unternehmen, dass Internet-

Start-ups, die sich auf Lösungen

und Geschäftsmodelle für mo-

bile Endgeräte spezialisieren,

die besten Zukunftsaussichten

besitzen. Auf den weiteren

Plätzen liegen Cloud- und Big-

Data-Lösungen (Bild 4). Inte

ressant dabei: Die aktuelle Auf-

tragslage bildet die positive Zu-

kunftserwartung derzeit noch

nicht ab. Denn bei der Frage,

welche Projekte derzeit am

meisten extern vergeben wer-

den, antworten die IT-Dienst-

leister, dass es sich in erster Li-

nie um die Erstellung von Web-

seiten, ESB-Projekte (Enter

prise Service Bus) sowie Bera-

tungsaufträge handelt.

Wachstum 2015

5,4 %Software

5,5 %Smartphones

3,0 %IT-Services

2,8 %IT-Hardware

web & mobile developer 1/2016� Quelle: Bitkom

Umsatzentwicklung ausgewählter IT-Bereiche im Jahr 2015

im Vergleich zum Vorjahr (Bild 3).

Start-up-Chancen

Start-ups mit Cloud-
und Big Data-Lösungen

73 %

63 %

52 %

38 %

30 %

5 %

Start-ups mit mobilen
 Lösungen

Start-ups aus dem
E-Commerce Vereich

Start-ups mit
Beratungsfokus

Start-up mit
Finetech-Lösungen

Start-ups mit
anderen Schwerpunkten

web & mobile developer 1/2016� Quelle: IT-suppliers.com

� Mehrfachnennungen
waren möglich

Antworten: Welche Start-up-Unternehmen werden in den

nächsten drei Jahren am erfolgreichsten sein? (Bild 4)

Jetzt kostenlos anmelden:
twitter.com/dotnetpro_mag

gplus.to/dotnetpro

dotnetpro.de

facebook.de/dotnetpro

Top-Informationen für den .NET-Entwickler.

Klicken. Lesen. Mitreden.

dotnetpro
Newsletter

145www.webundmobile.de  01.2016

Anbieter

für Deutschland, Schweiz und Österreich.

Anbieterverzeichnis

Consulting / Dienstleister

5Minds IT-Solutions
GmbH & Co. KG
Pfefferackerstraße 5
45894 Gelsenkirchen
T: +49 (0) 209/ 883 068 - 0
F: +49 (0) 209/883 068 - 99
Nicole.Jones@5Minds.de
www.5Minds.de

Wir entwickeln hochperformante Enterprise-Lösungen für Desktop, Web und
Mobile mit aktuellen Technologien (u.a. .NET, Xamarin, Phonegap, Node.js, SQL,
NoSQL, Messaging). Dabei verstehen wir uns nicht nur als Problemlöser, sondern
als Vordenker für Softwareentwicklungsprozesse. Wo andere bei der Beratung
enden, gehen wir noch einen Schritt weiter. Wir blicken für Sie über den Tellerrand
und entwickeln nachhaltige und maßgeschneiderte IT-Lösungen, damit Sie
zukünftigen Anforderungen gelassen entgegenblicken können.
Wir freuen uns auf Sie! Nicole Jones

ANEXIA Internetdienst-
leistungs GmbH
Feldkirchner Straße 140
9020 Klagenfurt / AUSTRIA
T +43-50-556
F +43-50-556-500
info@anexia-it.com

ANEXIA wurde im Juni 2006 von Alexander Windbichler als klassischer Internet
Service Provider gegründet. In den letzten Jahren hat sich ANEXIA zu einem
stabilen, erfolgreichen und international tätigen Unternehmen entwickelt, das
namhafte Kunden rund um den Globus mit Standorten in Wien, Klagenfurt,
München, Köln und New York City betreut. ANEXIA bietet ihren Kunden
hochwertige und individuelle Lösungen im Bereich Web- und Managed Hosting,
sowie Individualsoftware und App Entwicklung.

prodot GmbH
Schifferstraße 196
47059 Duisburg
T: 0203 - 346945 - 0
F: 0203 - 346945 - 20
info@prodot.de
https://prodot.de

Intelligente Software für internationale Konzerne und mittelständische
Unternehmen: prodot stärkt Kunden im weltweiten Wettbewerb – mit effizienten,
stabilen und kostensenkenden Lösungen.
Durch das Zusammenspiel aus Know-how, Kreativität und Qualitätsmanagement
leisten wir einen Beitrag zum langfristigen Erfolg unserer Auftraggeber.
Seit über 15 Jahren vertrauen uns deshalb Marktführer wie Aldi Süd, Microsoft und
Siemens.
prodot – People. Passion. Performance..

eCommerce / Payment

Payone GmbH & Co. KG
Fraunhoferstraße 2-4
24118 Kiel
T: +49 431 25968-400
F: +49 431 25968-1400
sales@payone.de
www.payone.de

PAYONE ist einer der führenden Payment Service Provider und bietet modulare
Lösungen zur ganzheitlichen Abwicklung aller Zahlungsprozesse im E-Commerce.
Das Leistungsspektrum umfasst die Zahlungsabwicklung von allen relevanten
Zahlarten mit integriertem Risikomanagement zur Minimierung von
Zahlungsausfällen und Betrug. Standardisierte Schnittstellen und SDKs erlauben
eine einfache Integration in bestehende IT- und mobile Systemumgebungen. Über
Extensions können auch E-Commerce-Systeme wie Magento, OXID eSales,
Demandware, Shopware, plentymarkets und viele weitere unkompliziert
angebunden werden.

Web- / Mobile-Entwicklung & Content Management

digitalmobil GmbH & Co. KG
Bayerstraße 16a, 80335 München, T: +49 (0) 89 7 41 17 760, info@digitalmobil.com, www.digitalmobil.com

In allen Fragen rund um das Dienstleisterverzeichnis berät Sie Frau Roschke gerne persönlich!

Juliane Roschke  ▪  089 / 7 41 17 - 283  ▪  juliane.roschke@nmg.de

146 1.2016  www.webundmobile.de

Vorschau 2/2016

dotnetpro Unsere digitalen Angebote

Ausgabe 1/2016 ab 17.12.2015 am Kiosk
Im nächsten Schwerpunkt der dotnetpro geht es ans Eingemachte:
Dinge, die tief drinnen im .NET Framework ablaufen, aber massive
Auswirkungen auf die Anwendungen haben. Da geht es zum Beispiel
um Memory Leaks, Namensraum System und Runtime.Caching.
www.dotnetpro.de

Wöchentlicher Newsletter
www.webundmobile.de/newsletter-1022034.html

Shop
https://shop.webundmobile.de

YouTube
www.youtube.com/user/developermedia

Facebook
www.facebook.com/webundmobile

Google +
gplus.to/webundmobile

Twitter
twitter.com/webundmobile

Die Ausgabe 2/2016 erscheint am 14. Januar 2016

Der kommerzielle Erfolg eines Webshops mag von ei-

ner Vielzahl verschiedener Faktoren abhängen, doch

keine einzige Bestimmungsgröße wirkt sich derart

nachhaltig auf die Konversionsrate aus wie der Ablauf

des Zahlungsvorgangs aus der Sicht des potenziellen

Käufers. Dabei stellt sich heraus, dass weder Suchma-

schinenoptimierung der einzelnen Produktseiten,

noch A/B- oder MV-Tests verschiedener Designvari-

anten zur Maximierung der Konversionsrate, noch der

Einsatz eines CDNs (Content Delivery Networks) zur

Minimierung der Ladezeiten einem Webshop zum Er-

folg verhelfen können, wenn der Besucher das unter-

stützte Bezahlsystem grundlegend ablehnt. Daher sind

Online-Zahlungssysteme mit einer breiten Akzeptanz

für ein Unternehmen nahezu überlebenswichtig.

Zahlungssysteme in E-Commerce-Applikationen integrieren

Eine Software- oder Webanwendung

erfährt in der Regel auch nach ihrer

Veröffentlichung mehrere Änderun-

gen, sei es durch Hinzufügen neuer

Features oder Beheben von Fehlern.

Hierbei kann es leicht passieren, dass

diese Änderungen ungewollte Auswir-

kungen auf andere bereits bestehende

Komponenten der Anwendung haben

beziehungsweise dort zu neuen Feh-

lern führen. Das ist der Punkt, an dem

Regressionstests ansetzen.

Regressionstest mit WebDriverIO

Die digitale Transformation stellt Un-

ternehmen vor vielfältige Herausfor-

derungen. Eine davon ist das Thema

Enterprise Mobility. In der Geschäfts-

welt der Zukunft nutzen Mitarbeiter

stationäre Desktop-PCs und Note-

books nur noch im Notfall. Stattdessen

verwenden sie mobile Devices: Smart-

phones, Tablets und Wearables wie

etwa Smartwatches und Smartglasses.

Über diese greifen sie auf diverse

mobile Applikationen zu.

Digitale Transformation

Noch vor wenigen Jahren war die Ein-

führung von Business Intelligence eine

unternehmensweite strategische Ent-

scheidung, von langer Hand geplant,

sorgfältig vorbereitet und von den Ex-

perten der IT-Abteilung umgesetzt.

Analysewerkzeuge und Reporting-

Tools sollten vor allem zur Konsolidie-

rung und Standardisierung der Unter-

nehmensprozesse beitragen. Heute

sind es die Fachabteilungen, die die

Einführung neuer BI-Tools forcieren.

Datenanalyse mit BI-Tools

Stellenmarkt
dotnetpro + web & mobile Developer

◯ 25.800 Exemplare Gesamtauflage
◯ 25.300 Newsletter-Empfänger
◯ 66.600 PI‘S

◯ ◯ ◯ .NET ◯ ◯ ◯ Architektur ◯ ◯ ◯ HTML5/JavaScript ◯ ◯ ◯ iOS/Android ◯ ◯ ◯

für
SIE!

was

habenDa

wir

Qualifizierte

Mitarbeiter

gesucht?

Kontakt:
Jens Schmidtmann, Klaus Ahlering • Tel. 089/74117-125 • sales@nmg.de

Besuchen Sie uns unter www.digitalmobil.com

iPhone/iPad

Android

BlackBerry

Windows Phone 7

dem mobilen
Browser

Wir liefern passgenaue Strategien und
Lösungen für Ihre Inhalte auf

Anz_Digitalmobil_A4.qxd:Layout 1 24.03.2011 10:03 Uhr Seite 1

	Titel
	003 Editorial
	004 Inhalt
	006 News & Trends
	014 Einführung in die Versionskontrolle mit Git
	026 Schneller CSS erzeugen mit PostCSS
	032 Template-Syntax von Angular 2.0
	038 Automatisiertes Testen von Webseiten
	042 Bibliothek Redux
	050 Heft-CD
	052 Bootstrap 4.0
	058 Bluetooth LE
	068 Battery Status API
	072 iOS: Core Graphics API
	078 Swift-Performance optimieren
	082 Modularisierte Apps mit Grunt und PhoneGap
	092 Xtext, Xtend: Domain-Specific Language für C++ / Qt (Teil 3)
	098 Strukturhilfe mit Android Studio
	106 Request-Bibliothek httpful
	111 Impressum
	112 E-Commerce-Software Magento 2
	118 TYPO3 CMS Version 7 LTS
	124 Aimeos E-Commerce-Package
	128 Grafik für Entwickler: Landingpage
	132 Wissensbasierte Applikationen entwickeln mit Ontologien
	140 Online-Recht 140
	142 Arbeitsmarkt
	145 Dienstleisterverzeichnis
	146 Vorschau

